

Department of Electronics and Communication Engineering

PROGRAM: Bachelor of Technology (B. TECH)

COURSE OUTCOMES (CO) Statements & CO-PO-PSO Mapping

(SESSION 2022-23)

Prepared By:

Arpita Johri

Rakhi Kumari

Prof. (Dr.) Sanjay Kr. Singh

HOD

INDEX

- **1. Vision and Mission Statement of College, along with Quality Policy**
- 2. Vision and Mission Statement of the Department
- 3. Program Educational Objectives (PEOs), Program Outcomes (POs) & Program Specific Outcomes (PSOs) Statements
- **4.** Evaluation Scheme as received from University
- 5. Course Outcome (CO) Statements, its mapping with POs and PSOs for Odd and Even Sem

1. Vision and Mission Statement of College, along with Quality Policy

- 2. Vision and Mission Statement of the Department
- 3. Program Educational Objectives (PEOs), Program Outcomes (POs) & Program Specific Outcomes (PSOs) Statements

Vision and Mission of the College

Vision

To take ABES Engineering College to such a level that, it is at par with the leading institutions of the world in providing leadership to the international education system and be amongst the top-rated institutions of the world by providing a transformative education to create leaders and innovators embedded in traditional Indian values.

Mission

- 1. To create an ambiance for healthy teaching-learning process.
- 2. To nurture the students and infuse in them-
 - A passion to excel professionally.
 - A spirit to be of utmost use to the industry, corporate sector and the society at large.
 - An intense desire to take challenging responsibilities and leadership roles.
 - A craving to be wholesome good human beings.
- 3. To develop an environment for creating new knowledge through research and by thriving to explore innovative ideas.

Quality Policy

To continuously thrive to provide a congenial and wholesome academic environment and a healthy culture for faculty, staff and students which would motivate teachers' full participation with passion and develop an intense desire in the students to acquire comprehensive education and hence become a useful and confident human resource for the industry and academia.

Vision and Mission of Department of Electronics & Communication Engineering

Vision

To contribute to India and the world through excellence in education and research in the field of Electronics & Communication Engineering and serve as valuable resource for the industry and the society at large.

Mission

To create an environment, which shall encourage the development of innovative professionals and researchers in the cutting-edge technologies of Electronics & Communication Engineering, in line with industry requirements and to impart professional ethics with positive attitude.

Programme Educational Objectives (PEOs)

PEO 1. To impart the students sound technical knowledge and skills in the core & related science & mathematics subjects of Electronics & Communication Engineering so that they graduate as professionally competent engineers, capable of applying & implementing the acquired skills.

PEO 2. To inculcate in students a desire to be innovative and passionate about excelling in the field of Electronics & Communication Engineering.

PEO 3. To develop managerial and soft skills so that they become confident and competent enough to take challenging responsibilities & leadership roles in the industry & corporate.

PEO 4. To equip them with solid foundation in ECE engineering so that they can pursue higher studies in the subject.

PEO 5. To groom the students to acquire professional ethics, moral values and devotion to duty so that they prove to be worthy citizen of India with international outlook.

Program Outcomes (POs)

- **PO1.** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2. Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3.** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4.** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5.** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **PO6.** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7.** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9.** Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse exams, and in multidisciplinary settings.
- **PO10. Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11. Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12. Life-long learning:** Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs) relevant to the Course:

- **PSO1.** An ability to design and analyze the concepts and applications in the field of communication/ networking, signal processing, embedded systems, and semiconductor technology.
- **PSO2.** An ability to comprehend the technological advancements in the usage of modern design tools to analyze and design subsystems/processes for a variety of applications.
- **PSO3.** An ability to learn the courses related to Microelectronics; Signal processing, Microcomputers, Embedded and Communication Systems to develop solutions to real world problems.
- **PSO4.** An ability to communicate in both oral and written forms, the work already done and the future with necessary road maps, demonstrating the practice of professional ethics and the concerns for social and environmental impact.

4. Evaluation Scheme as received from University

					,							
S.No.	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credits						
	SEMESTER I											
1	BAS102	Engineering Chemistry	3	1	0	4						
2	PAS103	Engineering Methometics I	2	1	0	1						

B. TECH. ELECTRONICS AND COMMUNICATION ENGINEERING (FIRST YEAR)

1	BAS102	Engineering Chemistry	3	1	0	4
2	BAS103	Engineering Mathematics I	3	1	0	4
3	BEC101	Fundamentals of Electronics Engineering	2	1	0	3
4	BME101	Fundamentals of Mechanical Engineering	2	1	0	3
5	BAS105	Soft Skills	3	0	0	3
6	BAS152	Engineering Chemistry Lab	0	0	3	1
7	BEC151	Basic Electronics Engineering Lab	0	0	3	1
8	BAS155	English Language Lab	0	0	3	1
9	BWS151	Workshop Practice Lab	0	1	3	2
		TOTAL SEMESTER CREDITS				22

B. TECH. ELECTRONICS AND COMMUNICATION ENGINEERING (FIRST YEAR)

BAS201 BAS203	SEMESTER II Engineering Physics				
	Engineering Physics	2			
BAS203		3	1	0	4
	Engineering Mathematics II	3	1	0	4
BEE201	Fundamentals of Electrical Engineering	2	1	0	3
BCS201	Programming for Problem Solving	2	1	0	3
BAS204	Environment and Ecology	3	0	0	3
BAS251	Engineering Physics Lab	0	0	3	1
BEE251	Basic Electrical Engineering Lab	0	0	3	1
BCS251	Programming for Problem Solving Lab	0	0	3	1
BCE251	Engineering Graphics & Design Lab	0	1	3	2
A251/ BVA252	Sports and Yoga / NSS	0	0	3	0
	TOTAL SEMESTER CREDITS				22
A	BAS204 BAS251 BEE251 BCS251 BCE251	BAS204Environment and EcologyBAS251Engineering Physics LabBEE251Basic Electrical Engineering LabBCS251Programming for Problem Solving LabBCE251Engineering Graphics & Design LabA251/ BVA252Sports and Yoga / NSS	BAS204Environment and Ecology3BAS251Engineering Physics Lab0BEE251Basic Electrical Engineering Lab0BCS251Programming for Problem Solving Lab0BCE251Engineering Graphics & Design Lab0A251/ BVA252Sports and Yoga / NSS0	BAS204Environment and Ecology30BAS251Engineering Physics Lab00BEE251Basic Electrical Engineering Lab00BCS251Programming for Problem Solving Lab00BCE251Engineering Graphics & Design Lab01A251/ BVA252Sports and Yoga / NSS00	BAS204Environment and Ecology300BAS251Engineering Physics Lab003BEE251Basic Electrical Engineering Lab003BCS251Programming for Problem Solving Lab003BCE251Engineering Graphics & Design Lab013A251/BVA252Sports and Yoga / NSS003

B. TECH. ELECTRONICS AND COMMUNICATION ENGINEERING (SECOND YEAR)

S.No.	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credits
		SEMESTER III				
1	KOE035	Basics Data Structure & Algorithms	3	1	0	4
2	KAS301	Technical Communication	2	1	0	3
3	KEC301	Electronic Devices	3	1	0	4
4	KEC302	Digital System Design	3	1	0	4
5	KEC303	Network Analysis and Synthesis	3	0	0	3
6	KEC351	Electronics Devices Lab	0	0	2	1
7	KEC352	Digital System Design Lab	0	0	2	1
8	KEC353	Network Analysis and Synthesis lab	0	0	2	1
9	KEC354	Mini Project or Internship Assessment	0	0	2	1
10	KNC302	Python Programming	2	0	0	NC
11	-	MOOCs (Essential for Hons. Degree)	-	-	-	
		TOTAL SEMESTER CREDITS				22

		SEMESTER IV				
1	KAS402	Maths-IV	3	1	0	4
2	KVE401	Universal Human Values	3	0	0	3
3	KEC401	Communication Engineering	3	0	0	3
4	KEC402	Analog Circuits	3	1	0	4
5	KEC403	Signal System	3	1	0	4
6	KEC451	Communication Engineering Lab	0	0	2	1
7	KEC452	Analog Circuits Lab	0	0	2	1
8	KEC453	Signal System Lab	0	0	2	1
9	KNC401	Computer System Security	2	0	0	NC
10		MOOCs (Essential for Hons. Degree)	-	-	-	-
		TOTAL SEMESTER CREDITS				21

	LIST OF ENGINEERING SCIENCE COURSES										
1.	KOE031/041	Engineering Mechanics	3	1	0	4					
2.	KOE032/042	Material Science	3	1	0	4					
3.	KOE033/043	Energy Science & Engineering	3	1	0	4					
4.	KOE034/044	Sensor & Instrumentation	3	1	0	4					
5.	KOE035/045	Basics Data Structure & Algorithms	3	1	0	4					
6.	KOE036/046	Introduction to Soft Computing	3	1	0	4					
7.	KOE037/047	Analog Electronics Circuits	3	1	0	4					
8.	KOE038/048	Electronics Engineering	3	1	0	4					

B. TECH. ELECTRONICS AND COMMUNICATION ENGINEERING (THIRD YEAR)

S.No.	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credits
	1	SEMESTE	R V	I		
1.	KEC-501	Integrated Circuits	3	1	0	4
2.	KEC-502	Microprocessor & Microcontroller	3	0	0	4
3.	KEC-503	Digital Signal Processing	3	0	0	4
4.	KEC-053	Department Elective-I VLSI Technology	3	0	0	3
5.	KEC-058	Departmental Elective Course-II Optical Communication	3	1	0	3
6.	KEC-551	Integrated Circuits Lab	0	0	2	1
7.	KEC-552	Microprocessor & Microcontroller Lab	0	0	2	1
8.	KEC-553	Digital Signal Processing Lab	0	0	2	1
9.	KEC-554	Mini Project/Internship	0	0	2	1
10.	KNC501	Constitution of India, Law and Engineering	2	0	0	NC
11.		MOOCs (Essential for Hons. Degree)				
		TOTAL SEMESTER CREDITS			22	

**The Mini Project or Internship (4weeks) conducted during summer break after IV Semester and will be assessed during Vth Semester.

Departmental Elective Course- I	Departmental Elective Course - II
KEC-051 Computer Architecture and Organization	KEC-055 Electronics Switching
KEC-052 Industrial Electronics	KEC-056 Advance Semiconductor Device
KEC-053 VLSI Technology	KEC-057 Electronic Instrumentation and Measurements
KEC-054 Advance Digital Design using Verilog	KEC-058 Optical Communication

S.No.	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credits					
	SEMESTER VI										
1.	KEC-601	Digital Communication	3	1	0	4					
2.	KEC-602	Control System	3	1	0	4					
3.	KEC-603	Antenna and Wave Propagation	3	1	0	4					
4.	KEC-063	Department Elective–III- Data Communication Networks	3	0	0	3					
5.	KOE067	Open Elective-I- Basics of Data Base Management System	3	0	0	3					
6.	KEC-651	Digital Communication Lab	0	0	2	1					
7.	KEC-652	Control System Lab	0	0	2	1					
8.	KEC-653	Elective Lab- CAD for Electronics Lab	0	0	2	1					
9.	KNC602	Indian Tradition, Culture and Society	2	0	0	NC					
10.		MOOCs (Essential for Hons. Degree)	-	-	-	-					
·		TOTAL SEMESTER CREDI	TS			21					

Departmental Elective Course - III KEC-061 Microcontroller & Embedded System KEC-062 Satellite Communication KEC-063 Data Communication Networks KEC-064 Analog Signal Processing

Elective Lab Course KEC-653A Measurement & Instrumentation Lab KEC-653B CAD for Electronics Lab KEC-653C Microcontroller & Embedded System Lab

LIST OF OPEN ELECTIVE COURSES -I

KOE061- REAL TIME SYSTEMS KOE062 -EMBEDDED SYSTEM KOE063 -INTRODUCTION TO MEMS KOE064 -OBJECT ORIENTED PROGRAMMING KOE065- COMPUTER BASED NUMERICAL TECHNIQUES KOE066- GIS & REMOTE SENSING KOE066- GIS & REMOTE SENSING KOE067 -BASICS OF DATA BASE MANAGEMENT SYSTEM KOE068 -SOFTWARE PROJECT MANAGEMENT KOE069 -UNDERSTANDING THE HUMAN BEING COMPREHENSIVELYHUMAN ASPIRATIONS AND ITS FULFILLMENT

B. TECH. ELECTRONICS AND COMMUNICATION ENGINEERING (FOURTH YEAR)

S. No	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credits
		SEMES	TER VII			
1.	KHU702	HSMC-1-Project Management & Entrepreneurship Development	3	0	0	3
2.	KEC-072	Department Elective –IV VLSI Design	3	0	0	3
3.	KEC-075	Department Elective –V Information Theory & Coding	3	0	0	3
4.	KEC-076	Department Elective –V Wireless & Mobile Communication	3	0	0	3
5.	KOE074	Open Elective-II Renewable Energy Resources	3	0	0	3
6.	KEC751B	VLSI Design Lab	0	0	2	1
8.	KEC-752	Mini Project or Internship Assessment	0	0	2	1
9.	KEC753	Project-I	0	0	8	4
		TOTAL SEMESTER C	REDITS			18

Department Elective - 3	Department Elective Course-V
1. KEC-071 Digital Image Processing	1. KEC-075 Information Theory & Coding
2. KEC-072 VLSI Design	2. KEC-076 Wireless & Mobile Communication
3. KEC-073 Optical Network	3. KEC-077 Micro & Smart Systems
4. KEC-074 Microwave & Radar Engineering	4. KEC-078 Speech Processing
Lab for Department Elective	Open Elective-II
1. KEC753A Digital Image Processing Lab	1. KOE071 FILTER DESIGN
2. KEC753B VLSI Design Lab	2. KOE072 BIOECONOMICS
3. KEC753C Optical System and Networking Lab	3. KOE073 MACHINE LEARNING
4. KEC753D Microwave & Radar Engineering Lab	4. KOE074 RENEWABLE ENERGY RESOURCES
	5. KOE075 OPERATIONS RESEARCH

S. No	Course Code	Course Title	Lecture (L)	Tutorial (T)	Practical (P)	Credits						
	SEMESTER VIII											
1.	KHU801	HSMC-2-Rural Development: Administration and Planning	3	0	0	3						
2.	KOE-081	Cloud Computing	3	0	0	3						
3.	KOE-094	Open Elective –IV Digital and Social Media Marketing	3	0	0	3						
4.	KEC-851	Project II	0	0	18	9						
		MOOCs (Essential for Hons. Degree)	-	-	-	-						
		TOTAL SEMESTER CRED	DITS			18						

Open Elective-III	Open Elective-IV
1. KOE-080 FUNDAMENTALS OF DRONE TECHNOLOGY	1. KOE-090 ELECTRIC VEHICLES
2. KOE-081 CLOUD COMPUTING	2. KOE-091 AUTOMATION AND ROBOTICS
3. KOE-082 BIO MEDICAL SIGNAL PROCESSING	3. KOE-092 COMPUTERIZED PROCESS CONTROL
4. KOE-083 ENTREPRENEURSHIP DEVELOPMENT	4. KOE-093 DATA WAREHOUSING & DATA MINING
5. KOE-084 INTRODUCTION TO SMART GRID	5. KOE-094 DIGITAL AND SOCIAL MEDIA MARKETING
6. KOE-085 QUALITY MANAGEMENT	6. KOE-095 MODELING OF FIELD-EFFECT NANO DEVICES
7. KOE-086 INDUSTRIAL OPTIMIZATION TECHNIQUES	7. KOE-096 MODELLING AND SIMULATION OF DYNAMIC
8. KOE-087 VIROLOGY	SYSTEMS
9. KOE-088 NATURAL LANGUAGE PROCESSING	8. KOE-097 BIG DATA
10. KOE-089 **HUMAN VALUES IN MADHYASTH	9. KOE-098 **HUMAN VALUES IN BUDDHA AND JAIN

5. Course Outcome (CO) Statements, its mapping with POs and PSOs for Odd Sem

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

Ref: AICTE Examination Reforms (w.e.f. November, 2018) & Prof. Dr.) N.J.Rao, IISc Banglore, NPTEL, https://www.youtube.com/watch?v=28mjSlfKWic

NAME OF SUBJECT WITH SUBJECT CODE:

Engineering Chemistry [BAS 102]

NAME(S) OF FACULTY INVOLVED:

Dr.Neelam Yadav, Dr.Aarti Dwivedi, Dr. Mamta Gautam

SESSION: 2022	-23							YEAR /	SEM: I/ I							
Course Outcome No.							Statemen	ts						Knowl	edge Lev	el, KL
CO1	proper	rties, Cl	nemistry	g of the the the the of advance reen Chem	ed mater	-	-		•				U	(U	K2 Inderstand	d)
CO2		the fu chemist		ntal concep	ots of d	etermina	ation of	structu	re with	various	spectral	techniq	ues and		K3 (Apply)	
CO3	produ	cts and	categor	construction rize the reat constry of E	sons for	corrosi	on and	study n			0 0	0	0		K3 (Apply)	
CO4		+	lerstand	he conc	cepts of	(U	K2 Inderstand	d)								
CO5	when	used as		operties nemistry	(U	K2 Inderstand	d)									
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	3	1	1	3					1				
CO2	3	3	2	3	2	2	2					1				
CO3	3	3	1	2	2	1	1					1				
CO4	3	3	3	3	2	3	2				1	2				
CO5	2	2	1	2	2	1	2	1	1			2				
Average	2.8	2.6	1.6	2.6	1.8	1.6	2	1	1		1	1.4				

					ABES H	ENGINEI	ERING C	OLLEG	E, GHAZ	IABAD						
]	DEPARTME	ENT OF H	ELECTR	ONICS &	comm	UNICAT	ION ENG	INEERIN	IG				
Ref: AIC	CTE Exan	nination I	Reforms (w.e.f. Novem	ber, 2018)) MAPPI lao, IISc H		NPTEL, <u>h</u>	ttps://wwv	v.youtube.	com/watch	<u>?v=28mj</u>	<u>SlfKWic</u>	
				TH SUBJEC atics – I [BAS		:				ACULTY . Ganesh K			aurabh Sax	tena		
SESSION: 2022	-23							YEAR /	SEM: I/]	[
Course Outcome No.							Statemen	ıts						Knowl	edge Lev	el, KL
CO1	Enhanc	e the kno	owledge o	f Matrices for	r its applic	ation in v	various do	mains of l	Mathemati	ics.					K3 (Apply)	
CO2			various co ns, curve	plications	in	(U	K2 Inderstan	d)								
CO3	Apply and jac		ept of ordi	functions		K3 (Apply)										
CO4	Unders volume		concept o	f multiple int	egral, Beta	and Gam	nma Func	tion, Diric	chlet's the	orem and i	ts applicati	ion to find	area and		K3 (Apply)	
CO5	Apply	the conce	ept of Vec	tor Calculus	to analyze	and evalu	ate direct	ional deri	vative, lin	e. Surface	and volum	e integrals	S.		K3 (Apply)	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1	3	2					3		3				
CO2	2	3	1	3	2					3		3				
CO3	3	3	1	3	2					3		3				1
CO4	2	3	1	3	2					3		3				
CO5	3	3	1	3	2					3		3				
Average	2.6	3	1	3	2					3		3				

					ABES I	ENGINEI	ERING C	COLLEG	E, GHAZ	IABAD						
]	DEPARTMI	ENT OF H	ELECTR	ONICS &	comm	UNICAT	ION ENG	INEERIN	IG				
Ref: AIC	TE Exan	nination H	Reforms (w.e.f. Novem	ber, 2018))-PO-PS(Dr.) N.J.R			NPTEL, h	ttps://www	v.youtube.	com/watch?v	=28mj\$	SlfKWic	
				TH SUBJE(s Engineering						ACULTY a , Mr. Sha						
SESSION: 2022	-23							YEAR /	SEM: I/]	I						
Course Outcome No.							Stateme	ents						Kn	owledge KL	Level,
CO1	Descrit	be the cor	ncept of P	N Junction a	nd devices									(K2 Understa	und)
CO2	Explain	plain the concept of BJT, FET and MOFET.													K2 Understa	ind)
CO3	Apply	the conce	pt of Ope			K3 (Apply	r)									
CO4	Perform	n numbei	systems	conversions,	binary ari	thmetic ar	nd minimi	ze logic f	unctions.						K3 (Apply	·)
CO5	Descrit	be the fur	ıdamental	s of commun	ication tec	hnologies	5.							(K2 Understa	nd)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO3	PSO4
CO1	3	3	1	1	2			3		1		1				
CO2	2	2	1	1	2			3		1		1		1		
CO3	3	2	1	1	2			3		1		1				
CO4	2	2	2	1	2			3		1		1				
CO5	2	2	1	1	2			3		1		1				
Average	2.4	2.4	1.2	1	2			3		1		1				

					ABES H	ENGINE	ERING C	COLLEG	E, GHAZ	IABAD						
				DEPARTME	ENT OF H	ELECTR	ONICS &	k COMM	UNICAT	ION ENG	INEERIN	IG				
Ref: AIC	TE Exan	nination I	Reforms (w.e.f. Novem	ber, 2018)) MAPPI Rao, IISc H		NPTEL, <u>h</u>	ttps://www	v.youtube.o	com/watch?v	<u>=28mj</u>	<u>SlfKWic</u>	
				TH SUBJEC l Engineering						ACULTY ia , Mr. Sh						
SESSION: 2022	-23							YEAR /	SEM: I/]	[
Course Outcome No.							Statemo	ents						Kn	owledge KL	Level,
CO1	Apply	the conce	ept of forc	e resolution a	and stress a	and strain	to solve b	basic prob	lems.						K3 (Apply	·)
CO2	Unders	tand the	constructi		(K2 Understa	und)									
CO3	Explain	n the cons	struction		(K2 Understa	und)									
CO4	Unders	tand fluid	d properti	es, conservati	on laws a	nd hydrau	lic machi	nery used	in real life	2 .				(K2 Understa	und)
CO5	Unders applica		working p	principle of di	fferent me	easuring in	nstrument	and mech	atronics v	with their a	dvantages	, scope and	l industrial	(K2 Understa	und)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO3	PSO4
C01	3	2	1	2			2			3		3				
CO2	2	2	2	2	1		3			3	1	3				
CO3	3	1	1	1			2			3		2				
CO4	3	2	1	1	1		2			3		3				
CO5	2	3	2	2	3	3				3		3				
Average	2.6	2	1.4	1.6	1.67	3	2.25			3	1	2.8				

					ABES H	ENGINEI	ERING C	OLLEG	E, GHAZ	IABAD						
]	DEPARTMI	ENT OF H	ELECTR	ONICS &	c COMM	UNICAT	ION ENG	INEERIN	١G				
Ref: AIC	CTE Exan	nination H	Reforms (v	w.e.f. Novem	1ber, 2018)) MAPPI ao, IISc H		NPTEL, <u>h</u>	ttps://www	v.youtube.	com/watch	<u>1?v=28mj</u>	<u>SlfKWic</u>	
	NAME (ft Skills []	TH SUBJE(BAS105]	CT CODE	:				ACULTY l, Km. Sha			al			
SESSION: 2022	2-23							YEAR /	SEM: I/ I	[
Course Outcome No.							Statemen	its						Knowl	edge Lev	el, KL
CO1	Write p	profession	nally in si	mple and cor	rect Englis	sh.									K3 (Apply)	
CO2	Demon	strate act	ive listeni	ls.		K3 (Apply)										
CO3	Learn t	he use of	correct b		(U	K2 Inderstan	d)									
CO4	Acquir	e the skil	ls necessa	ry to commu	nicate effe	ectively an	nd deliver	presentati	ons with o	clarity and	impact.				K3 (Apply)	
CO5	Unders	tand and	apply son	ne important	aspects of	core skill	ls, like Le	adership a	nd stress i	manageme	nt.		-	(U	K2 Inderstan	d)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01		1	3	2		3	3	3	2	3	1	2	3			
CO2		1	2	2	1			3	2	3	2		3			
CO3			1						1	3						
CO4		2	2	3	3	3	3	3	3	3	3	3	3			
CO5								3	3	3	2	1	3			
Average		1.33	2	2.33	3	3	3	3	2.2	3	2	2	3			

					ABES H	ENGINEI	ERING C	COLLEG	E, GHAZ	IABAD						
]	DEPARTMI	ENT OF H	ELECTR	ONICS &	& COMM	UNICAT	ION ENG	INEERIN	IG				
Ref: AIC	TE Exan	nination I	Reforms (w.e.f. Novem	ber, 2018)) MAPPI Rao, IISc H		NPTEL, <u>h</u>	ttps://www	v.youtube.	com/watch	?v=28mj	<u>SlfKWic</u>	
				TH SUBJEC ry Lab [BAS		:				ACULTY v, Dr. Mar			i Dwivedi,			
SESSION: 2022	-23							YEAR /	SEM: I/]	[
Course Outcome No.							Statemer	nts						Knowl	edge Lev	el, KL
CO1	Get an	understa	nding of t	he use of diff	erent analy	ytical inst	ruments.								K3 (Apply)	
CO2	Measur in the v		lecular / s	on content		K3 (Apply)										
CO3	Measur	e the har	dness and			K3 (Apply)										
CO4	Know Paracet		amental o	concepts of	the prepar	ation of	phenol fo	ormaldehy	vde & ure	ea formald	ehyde res	in, adipic	acid and		K3 (Apply)	
CO5	Estima	te the rate	e constant	of reaction.											K3 (Apply)	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	2	2	3	2	2	1		1		2	2				<u> </u>
CO2	3	2	1	3	2	1	1		1	1	1	2				
CO3	3	3	3	3	2	1	1		1		2	2				
CO4	2	1	2	2	1	1	1		1		1	1				
CO5	3	2	2	2	1	1	2	1	3	1	1	2				
Average	2.8	2	2	2.6	1.6	1.2	1.2	1	1.4	1	1.4	1.8				

					ABES I	ENGINEI	ERING C	COLLEG	E, GHAZ	IABAD						
]	DEPARTMI	ENT OF H	ELECTR	ONICS &	& COMM	UNICAT	ION ENG	INEERIN	IG				
Ref: AIC	CTE Exan	nination I	Reforms (w.e.f. Novem	ber, 2018)) MAPPI Rao, IISc I		NPTEL, h	uttps://www	v.youtube.	com/watch	n?v=28mj\$	SlfKWic	
				TH SUBJE(eering Lab [B		:				ACULTY a , Mr. Sha			lavie Tyag	i		
SESSION: 2022	-23							YEAR /	SEM: I/]	ſ						
Course Outcome No.							Statemen	its						Knowl	edge Lev	vel, KL
CO1	Recogn	nize vario	ous types o	of Active & P	assive Co	mponents	based on	their ratir	ngs.					(U	K2 Jnderstan	d)
CO2	Identify	y various	types of I			K3 (Apply)										
CO3	Wind a	Step do	wn transf			K3 (Apply)										
CO4	Demon	strate the	e working			K3 (Apply)										
CO5	Interpr	et the cha	racteristic	es and applica	ations of P	N junctio	n diode, Z	Zener diod	e, BJT an	d op-amp					K3 (Apply)	
CO6	Verify	the Truth	Table of	various Logi	c Gate and	l impleme	ent a Bool	ean functi	on using l	ogic gates	in both SC	OP and PO	S forms.		K3 (Apply)	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2		2		1	1		1	1	3				
CO2	3	2	2		2		1	1		1	1	3				
CO3	3	2			2		1	1		3	2	3				
CO4	3	2	3	2	3	2	1	1	2	3	3	3				
CO5	3	2	3	2	2	3	1	1	2	3	3	3				
CO6	3	3	3	2	2	2			2	3	3	3				
Average	3	2.17	2.6	2	2.33	2.33	1	1	2	2.33	2.17	3				

					ABES I	ENGINE	ERING C	OLLEG	E, GHAZ	IABAD						
]	DEPARTMI	ENT OF I	ELECTR	ONICS &	cOMM	UNICAT	ION ENG	INEERIN	NG				
Ref: AIC	TE Exan	nination I	Reforms (w.e.f. Nover	ıber, 2018)-PO-PSC Dr.) N.J.R			NPTEL, h	ttps://www	v.youtube.	com/watc	h?v=28mj	SlfKWic	
				TH SUBJE(Lab [BAS15		:		Kumari	Shalini , I	ACULTY Dr. Moksh Ms. Khush	i Juyal , M		a Joshi , I	Dr. Zia Zel	hra Zaidi,	Ms.
SESSION: 2022	-23							YEAR /	SEM: I/]	[
Course Outcome No.						S	Statement	S						Knowle	edge Leve	el, KL
CO1	To faci	litate sof	tware base	ed learning to	o provide t	he require	ed English	Languag	e proficiei	ncy to stud	ents.				K3 (Apply)	
CO2		To acquaint students with specific dimensions of communication skills i.e. Reading, Writing, Listening, Thinking and K2 (Understar Speaking.														l)
CO3	To train															l)
CO4	To cult	ivate rele	evant tech	nical style of	communi	cation and	l presentat	ion at the	ir work pl	ace and als	so for acad	emic uses.			K3 (Apply)	
CO5	To ena dynam		nts to app	oly it for prac	tical and o	oral preser	ntation pu	rposes by	being hor	ned up in p	presentatio	n skills an	d voice-		K3 (Apply)	
CO-PO Mapping	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1		1	3	2		3	3	3	2	3	1	2	3			
CO2		1	2	2				3	2	3	2		3			
CO3			1						1	3						
CO4		2	2	3	3	3	3	3	3	3	3	3	3			
CO5								3	3	3	2	1	3			
Average		1.33	2	2.33	3	3	3	3	2.2	3	2	2	3			

					ABES H	ENGINE	ERING C	OLLEG	E, GHAZ	IABAD						
]	DEPARTMI	ENT OF H	ELECTR	ONICS &	cOMM	UNICAT	ION ENG	INEERIN	١G				
Ref: AIC	TE Exan	nination H	Reforms (w.e.f. Novem	ber, 2018)		-PO-PSC Dr.) N.J.R			NPTEL, h	ttps://www	v.youtube.	com/watch	1?v=28mj	SlfKWic	
				TH SUBJEC Lab [BWS1:		:		Mr. Sha	rad Bhard	ACULTY waj , Dr. F ndra Pratar	Pratistha Sl	E D: harma , Mr	: Chetan R	Rajoria , N	Ir. Manat	oendra
SESSION: 2022	-23							YEAR /	SEM: I/]	[
Course Outcome No.							Statemen	ts						Knowl	edge Lev	el, KL
CO1	Use v	various ei	ngineering				K3 (Apply)									
CO2	Perfo	orm mach	ine opera				K3 (Apply)									
CO3	Perfo	orm manu	facturing				K3 (Apply)									
CO4	Perfo	orm opera	tions in w	velding, mold	ing, castin	g and gas	cutting.								K3 (Apply)	
CO5	Fabri	cate a jol	o by 3D p	rinting manuf	facturing t	echnique	areas.								K3 (Apply)	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	2						2		2	1						
CO2	2		2		3		2		2	1						
CO3	2						2		2	1						
CO4	3		2				2		2	1						
CO5	3		2		3		2		2	1						
Average	2.4		2		3		2		2	1						

					ABES I	ENGINEI	ERING C	COLLEG	E, GHAZ	IABAD						
]	DEPARTME	ENT OF H	ELECTR	ONICS &	& COMM	UNICAT	ION ENG	INEERIN	NG				
Ref: AIC	TE Exan	nination I	Reforms (w.e.f. Novem	ber, 2018)) MAPPI Rao, IISc E		NPTEL, <u>h</u>	ttps://www	w.youtube.c	com/watch?v=	<u>=28mj</u> §	<u>SlfKWic</u>	
	NAME (TH SUBJEC sics [BAS201		:				ACULTY , Dr. Yash		E D: Dr. Anubha	Gupta			
SESSION: 2022	-23							YEAR /	SEM: I/]	Π						
Course Outcome No.							Statem	ents						Kn	owledge KL	Level,
CO1				on of energy effect and Sch				to unders	tand the o	difference	in particle	and wave	nature with		K3 (Apply	·)
CO2		o understand the concept of displacement current and consistency of Ampere's law and also the properties of electron aves in different medium with the use of Maxwell's equations o understand the behavior of waves through various examples/applications of interference and diffraction phenomenon														·)
CO3		o understand the behavior of waves through various examples/applications of interference and diffraction phenomenon ncept of grating and resolving power.														·)
CO4	To kno of Lase		nctioning	of optical fib	er and its	properties	and appl	ications. T	o underst	and the co	ncept, proj	perties and	applications		K3 (Apply	·)
CO5	To kno	w the pro	operties ar	nd application	is of super	conductin	ng materia	lls and nar	io materia	ls.					K3 (Apply	·)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO3	PSO4
C01	2	2	1	1	1	3	2			2		3				
CO2	3	2	1	1	1	3	2			2		3				1
CO3	3	2	1	1	1	3	2			2		3				
CO4	2	2	1	1	1	3	2			2		3				
CO5	2	2	1	1	1	3	2			2		3				
Average	2.4	2	1	1	1	3	2			2		3				

				DEPARTME	ENT OF H	ELECTR	UNICS 8	a COMM	UNICAT	ION ENG	INEERIN	G				
Ref: AIC	CTE Exan	nination I	Reforms (w.e.f. Novem	ber, 2018)) MAPPI Rao, IISc I		NPTEL, <u>h</u>	ttps://www	v.youtube.	com/watch?v=	<u>=28mj</u> \$	<u>SlfKWic</u>	
				TH SUBJEC atics II [BAS		:				CULTY Dr. Shwet			anjeet Kaur			
SESSION: 2022	-23							YEAR /	SEM: I/]	Π						
Course Outcome No.							Statem	ents						Kn	owledge KL	Level,
C01			ncept of cient of 2	differentiatior nd order	n and inte	egration fo	or solving	g LDE of	nth order	with con	stant coef	ficient and	d LDE with		K3 (Apply)
CO2	Unders	inderstand and apply the concept of Laplace Transform to evaluate differential Equations.)
CO3	Unders	Jnderstand the concept of convergence of sequence and series and also expand the function as Fourier series.)
CO4				of analyticity nal transform		rmonic Fu	unction a	nd its app	plication t	o find ana	lytic func	tion and t	he image of		K3 (Apply)
CO5	Apply	the conce	ept of com	plex function	is for find	ing Tayloi	r's series,	Laurent's	series and	l evaluatio	n of defini	te integral	s.		K3 (Apply)
CO-PO Mapping	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO3	PSO4
C01	2	3	1	3	2					3		3				
CO2	2	3	1	3	2					3		3				
CO3	2	3	1	3	2					3		3				
CO4	2	3	1	3	2					3		3				
CO5	2	3	1	3	2					3		3				
Average	2	3	1	3	2					3		3				

					ABES I	ENGINEI	ERING C	COLLEG	E, GHAZ	IABAD							
]	DEPARTMI	ENT OF H	ELECTR	ONICS 8	k COMM	UNICAT	ION ENG	INEERIN	NG					
Ref: AIC	TE Exan	nination H	Reforms (v	w.e.f. Novem	iber, 2018)) MAPPI Rao, IISc H		NPTEL, h	ttps://www	v.youtube.	com/watch?v=	=28mj\$	SlfKWic		
				TH SUBJEC Engineering						ACULTY , Mr. Sum							
SESSION: 2022	-23							YEAR /	SEM: I/]	Π							
Course Outcome No.							Statem	ents						Kn	owledge KL	Level,	
CO1	Illustrate the application of KVL/KCL and network theorems to DC electrical circuits.												K3 (Apply)				
CO2	Analyze the power factor and measure power of single phase and three phase AC electrical circuits.											K3 (Apply)					
CO3	Plot the	Plot the frequency response curve of a Single Phase AC series resonant circuit.											K3 (Apply)				
CO4	Calcula	ate efficie	ency of a s	single phase t	ransforme	r and DC	machine.							K3 (Apply)			
CO5			eed measu		speed reve	rsal of th	ree phase	induction	motor and	d Identify	the type of	f DC and A	AC machines		K3 (Apply	·)	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO3	PSO4	
CO1	3	3	2	3	3		2		3	3	1	1					
CO2	3	2	1	3	3	3	2		3	3	1	1					
CO3	3	2	1	3	3		2		3	3	1	1					
CO4	3	3	2	3	3	3	2		3	3	1	1					
CO5	3	2	2	3	3	3	2		3	3	1	1					
Average	3	2.4	1.6	3	3	3	2		3	3	1	1					

					ABES I	ENGINE	ERING C	OLLEG	E, GHAZ	IABAD								
				DEPARTMI	ENT OF H	ELECTR	ONICS &	comm	UNICAT	ION ENG	INEERIN	IG						
Ref: AIC	CTE Exan	nination I	Reforms (w.e.f. Novem	iber, 2018)		-PO-PSC Dr.) N.J.R			NPTEL, h	ttps://wwv	v.youtube.	com/watch	n?v=28mj	SlfKWic			
				TH SUBJEC m Solving [E		:				ACULTY , Ms. Prach			Agarwal					
SESSION: 2022	2-23							YEAR /	SEM: I/]	Π								
Course Outcome No.	Statamonte													Knowledge Level, KI				
CO1	To dev	To develop Simple Algorithms for Arithmetic and Logical Problems.												K3 (Apply)				
CO2	To tran	To translate the Algorithms to Programs & Execution (in C Language).												K3 (Apply)				
CO3	To imp	To implement Conditional Branching, Iteration and Recursion.												K3 (Apply)				
CO4	To dec	ompose a	1 Problem	into Function	ns and Syr	nthesize a	Complete	Program	Using Div	vide and C	onquer Ap	proach.		K4 (Analyze)				
CO5	To use	Arrays, I	Pointers, a	and Structures	s to Develo	op Algorit	thms and	Programs.		_		-		K3 (Apply)				
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4		
CO1	3	3	3	3	3			2	1	2								
CO2	3 3 3 3 2 1 2 3 3 3 3 2 1 2																	
CO3	3	3	3	3	3		3	2	3	2				1	1			
CO4	3	3	3	3	3		3	2	3	2								
CO5	3	3	3	3	3		3	2	3	2								
Average	3	3	3	3	3		3	2	2.2	2								

					ABES I	ENGINE	ERING C	OLLEG	E, GHAZ	IABAD								
]	DEPARTMI	ENT OF I	ELECTR	ONICS &	c COMM	UNICAT	ION ENG	INEERIN	NG						
Ref: AIC	CTE Exan	nination I	Reforms (w.e.f. Nover	ber, 2018)-PO-PS(Dr.) N.J.R			NPTEL, h	ttps://www	v.youtube.	com/watch?v=	=28mj\$	SlfKWic			
				TH SUBJEC plogy (BAS2		2:			(S) OF F A ar Karimi	ACULTY	INVOLV	ED:						
SESSION: 2022	-23							YEAR /	SEM: I/]	[
Course Outcome No.	Statements													Knowledge Leve KL				
CO1	Gain	Gain in-depth knowledge on natural processes that sustain life, and govern economy												K2 (Understand)				
CO2	Estimate and predict the consequences of human actions on the web of life, global economy and quality of human life.												K3 (Apply)					
CO3		Develop critical thinking for shaping strategies (scientific, social, economic and legal) for environmental protection and conservation of biodiversity, social equity and sustainable development												(Analyze)				
CO4				des towards u ental problem					conomic	social chal	lenges, and	d participa	te actively in	K3 (Apply)				
CO5	Adopt	sustainab	ility as a j	practice in lif	e, society	and indus	try.							K3 (Apply)				
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO3	PSO		
CO1		1				3	3	2	1	1		1						
CO2	1	1	2	2	1				1	1	1	2						
CO3	3		2	2	1		3	3	2	1	2							
CO4	1					2	1	1	3	1		3						
CO5		1	2				3	3				2						
Average	1.67	1	2	2	1	2.5	2.5	2.25	1.75	1	1.5	2						

			1				UNICS		UNICAT	ION ENG	INEENI	10						
Ref: AIC	TE Exan	nination I	Reforms (w.e.f. Novem	iber, 2018))-PO-PS(Dr.) N.J.R			NPTEL, <u>h</u>	ttps://www	w.youtube.	com/watch?v=	=28mj\$	<u>SlfKWic</u>			
	NAME (TH SUBJE(ab (BAS251)		:		Dr. Vik					n Kr. Pandey,	Dr. Ar	ubha Gu	ipta,		
SESSION: 2022	-23							YEAR /	SEM: I/]	[
Course Outcome No.		Statements													Knowledge Level, KL			
C01		Determine the wavelengths of light emerging from a monochromatic source or polychromatic source and specific rotation of an optically active substance applying the principles of interference, diffraction and polarization phenomenon.													K3 (Apply)			
CO2	Measure the variation of magnetic field with the distance along the axis of a current carrying coil and ECE of copper applying Biot-Savart's and Faraday's law.											(Apply)						
CO3	Estima	te the pov	wer radiat	ed by the bla	ck body ar	nd the ene	ergy band	gap of the	semicond	luctor by e	lectrical m	nethod.		K3 (Apply)				
CO4	Measur	e specifi	c resistan	ce of a wire a	nd rate the	e ammeter	and volt	neter, app	lying Whe	eatstone B	ridge princ	ciple.		K3 (Apply)				
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS O2	PSO3	PSO4		
CO1	2	1		3	3			2	3	1	3	1						
CO2	2	1		3	2			2	3	1	3	1						
CO3	2	1		3	3			2	3	1	3	1						
CO4	2	1		3	1			2	3	1	3	1						
Average	2	1		3	2.25			2	3	1	3	1						

Ref: AIC	TE Exan	nination I		w.e.f. Novem		CO	-PO-PS() MAPPI	NG				com/watch	?v=28mi	SlfKWic				
	NAME (OF SUBJ	IECT WI	TH SUBJE(g. Lab (BEE2	CT CODE			NAME	(S) OF FA	ACULTY	INVOLV	ED:	nit Mahesw	-					
SESSION: 2022	-23							YEAR /	SEM: I/]	[
Course Outcome No.		Statements													Knowledge Level, K				
C01	Illust	Illustrate the application of kvl/kcl and network theorems to dc electrical circuits.												K3 (Apply)					
CO2	Analyz	Analyze the power factor and measure power of single phase and three phase ac electrical circuits.												K4 (Analyze)					
CO3	Demon	Demonstrate the behavior of a single phase ac series resonant circuit.											K3 (Apply)						
CO4	Calcula	Calculate efficiency of a single phase transformer and dc machine											K3 (Apply)						
CO5		-	eed measu	nrement and s	peed reve	rsal of thr	ree phase	induction	motor and	l identify t	he type of	dc and ac	machines	K3 (Apply)					
CO-PO Mapping	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4			
C01	3	3	2	3	3		2		3	3	1	1							
CO2	3	2	1	3	3	3	2		3	3	1	1							
CO3	3 2 1 3 3 3 2 3 3 1 1 3 2 1 3 3 2 3 3 1 1																		
CO4	3 3 2 3 3 3 2 3 3 1 1																		
CO5	3	2	2	3	3	3	2		3	3	1	1							
Average	3	2.4	1.6	3	3	3	2		3	3	1	1							

				DEPARTM	ENT OF F		UNICS &		UNICAL	ION ENG	INEEKI	G							
Ref: AIC	CTE Exan	nination I	Reforms (v	w.e.f. Noven	uber, 2018)		PO-PSC Dr.) N.J.R			NPTEL, h	ttps://www	v.youtube.	com/watch	n?v=28mj	SlfKWic				
				TH SUBJE Solving Lab					· /	ACULTY			i Agarwal,						
SESSION: 2022	-23							YEAR /	SEM: I/]	Π									
Course Outcome No.		Statements													Knowledge Level, K				
CO1	Able	Able to implement the algorithms and draw flowcharts for solving Mathematical and Engineering problems.											K3 (Apply)						
CO2	Able to define data types and use them in simple data processing applications.											K3 (Apply)							
CO3	Ability	Ability to design and develop Computer programs using decision making statements, iteration, function and recursion.											K3 (Apply)						
CO4	Demon	istrate an	understan	ding of com	puter prog	ramming	language	concepts 1	ising array	and struc	tures.			K3 (Apply)					
CO5	Able to	o impleme	ent Comp	uter program	s, analyzes	s, and inte	erprets the	concept o	f pointers	and file ha	andling an	d their usa	ge.	K3 (Apply)					
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4			
CO1	3	3	3	3	3			2	1	2		3							
CO2	3	3	3	3	3			2	1	2		3							
CO3	3	3	3	3	3		3	2	3	2		3							
CO4	3	3	3	3	3		3	2	3	2		3							
CO5	3	3	3	3	3		3	2	3	2		3							
Average	3	3	3	3	3		3	2	2.2	2		3							

Ref: AIC	CTE Exam	nination F	Reforms (v	w.e.f. Novem	ber, 2018)) MAPPI lao, IISc H		NPTEL, h	ttps://wwv	v.youtube.	com/watch	ı?v=28mj\$	SlfKWic					
				TH SUBJE(Design Lab [:				ACULTY & Mr. Mo										
SESSION: 2022	-23							YEAR /	SEM: I/	Π										
Course Outcome No.							Statemen	ıts						Knowl	edge Lev	el, KL				
CO1	Draw o	orthograp	hic projec	tion of basic	identities	such as po	oints and l	ines.							K3 (Apply)					
CO2	Draw o	orthograp	hic projec			K3 (Apply)														
CO3	Draw is	sometric	projection				K3 (Apply)													
CO4	Apply a	autocad s	oftware fo	or creation of	engineeri	ng drawir	ng and mo	dels.							K3 (Apply)					
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4				
CO1	3	2	2						2	1		2								
CO2	3	2	2						2	1		2								
CO3	3	2	2						2	1		2								
CO4	3	1	2		3				2	1		2								
Average	3	1.75	2		3				2	1		2								

				DEPARIMI	LNI OF F	LECIK	UNICS &		UNICAI	ION ENG	INEEKIN	G									
Ref: AIC	CTE Exan	nination H	Reforms (v	w.e.f. Novem	iber, 2018))-PO-PS(Dr.) N.J.R			NPTEL, h	ttps://www	v.youtube.	com/watch	n?v=28mj\$	SlfKWic						
				TH SUBJE(Algorithms [(S) OF FA	ACULTY	INVOLV	ED:									
SESSION: 2022	-23							YEAR /	SEM: II	/ III											
Course Outcome No.							Statemen	nts						Knowl	edge Lev	vel, KL					
CO1	Unders	tand and	analyze tl	he time and s	pace comp	plexity of	an algorit	hm						(K4 (Analyze))					
CO2		tand and mming)	implemer	nt fundament	namic			K3 (Apply)													
CO3	Discus	s various	algorithm			(U	K2 Inderstan	d)													
CO4	Discus	Discuss various algorithm design techniques for developing algorithms Discuss various searching, sorting and graph traversal algorithms													K3 (Apply)						
CO5	Unders	tand oper	ration on (Queue , Prior	ity Queue	, D-Queu	ie.	_	_			_	_	(U	K2 Inderstan	d)					
CO-PO Mapping	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4					
CO1	2	3	1	1								3		3	3						
CO2	2	1	1	2								1		3							
CO3	2	3	1	2						1		3		3							
CO4	2		1	1										3							
CO5	2		1											3							
Average	2	2.33	1	1.5						1		2.33		3	3						

									UNICAT	ION ENG	INEENII	U					
Ref: AIC	CTE Exan	nination F	Reforms (v	w.e.f. Noven	ber, 2018)) MAPPI lao, IISc E		NPTEL, h	ttps://www	v.youtube.	com/watch	n?v=28mj\$	SlfKWic		
				TH SUBJE cation (KAS-		:				ACULTY As. Kumar		ED:					
SESSION: 2022	2-23							YEAR /	SEM: II	/ III							
Course Outcome No.							Statemen	ıts						Knowl	edge Lev	el, KL	
CO1	Student enginee		enabled t	o understand	the nature	and obje	ctive of te	echnical co	ommunica	ation releva	ant for the	workplace	as	(U	K2 Jnderstan	d)	
CO2	Studen	ts will uti	lize the te	chnical writi	ng for the	purposes	of technic	cal commu	inication a	and its exp	osure in va	arious dime	ensions.		K3 (Apply)		
CO3	Studen	ts would	imbibe in				K3 (Apply)										
CO4	Technie compet		nunication	skills will c	reate a vas	t know-ho	ow of the	applicatio	n of the le	earning to p	promote th	eir technic	al	(K4 (Analyze))	
CO5	It woul	d enable	them to ev	valuate their	efficacy as	s fluent &	efficient	communio	cators by l	learning the	e voice-dy	namics.		(K4 (Analyze))	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1		2	2	2		3		2	3	3	3	3	3			2	
CO2		2	3	3	1	3		3		3	3	3	3	+ $+$ $+$			
CO3			1						1	3							
CO4		2	2	3	3	3	3	3	3	3	3	3	3			2	
CO5								3	3	3	2	1	3			2	
Average		2	2	2.67	2	3	3	2.75	2.5	3	2.75	2.5	3			2	

Ref: Al	ICTE Exaı	nination H	Reforms (w.e.f. No	ovember,	2018) &		D-PSO M N.J.Rao,			EL, https://	://www.yo	utube.co	m/watc	h?v=28mjSlf	KWic
NAME OF S	UBJECT	WITH S	UBJECT	CODE:	Electro	nic Device	es (KEC-3	301)			S) OF FA Suri/Dr. F			ED:		
SESSION: 2	022-23									YEAR /	SEM: II /	III				
Course Outcome No.							State	ements							Knowledge	e Level, KL
CO1	Underst	and the pr	inciples o	of semico	nductor	devices.									K (Unde	
CO2	Elabora	Elaborate and utilize the mathematical models of semiconductor junctions. Articulate carrier transport in semiconductors and design resistors.														(3 ply)
CO3	Articula															2 rstand)
CO4	Utilize t	he mather	matical m	odels of	MOS tra	nsistors fo	or circuits	and syste	ems.						K (Ap	-
CO5	Analyse	and find	applicatio	on of spec	cial purp	ose diode	s.								K (Unde	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PS O2	PSO3	PSO4
CO1	3	2								3		2			3	3
CO2	3	2								3		2			3	3
CO3	3	2								3		2			3	3
CO4	3	2								3		2			3	3
CO5	3	2								3		2			3	3
Average	3	2								3		2			3	3

Ref: AICTE Exa	aminatio	n Reform	ıs (w.e.f.	Novemb	er, 2018)			SO MAP .Rao, IIS		ore, NPTE	L, <u>https://</u>	www.yout	ube.com/w	vatch?v=28	<u>3mjSlfKW</u>	<u>ic</u>
NAME OF SUBJECT	WITH S	SUBJEC	T CODI	E : Digita	l System	Design	(KEC-30)2)		· · · ·	S) OF FA sana Sharr		NVOLVE	D:		
SESSION: 2022-23										YEAR /	SEM: II /	III				
Course Outcome No.							S	tatemen	ts						Know Leve	vledge I, KL
CO1	Design	and ana	lyze com	binationa	al logic c	ircuits.									K (Ap	
CO2	Compo	ose and a	nalyze m	odular co	ombinati	onal circ	uits with	MUX / I	DEMUX	, Decoder	& Encode	r.			K (Ap	
CO3	Create	& Chara	cterize sy	ynchrono	us seque	ntial logi	ic circuit	s.						K (Ap	C3 ply)	
CO4	Analyz	Analyze various logic families.													K (Under	12 rstand)
CO5	Constru	uct ADC	and DA	C and im	plement	in ampli	fier, integ	grator, et	с.						K (Ap	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	3	3	3	3					3	3	3	3	3
CO2	3	3	3	3	3	3	3					3	3	3	3	3
CO3	3	3	3	3	3	3	3					3	3	3	3	3
CO4	3	3	2	3	3	3	3					3	3	3	3	3
CO5	3	3	2	3	3	3	3					3	3	3	3	3
Average	3	O1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 3 3 2 3														3

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT Network Analysis & Sy				Е:								Y INVOLV Ms. Rakhi				
SESSION: 2022-23									YEAR	. / SEM: I	I/ III					
Course Outcome No.							S	tatemen	ts							vledge l, KL
CO1	Unders	stand bas	ics electr	ical circu	uits with	nodal an	nd mesh a	analysis.								K3 oply)
CO2	Apprec	ciate elec	trical net	work the	eorems.										K	K3 oply)
CO3	Apply	Laplace	transform			K	K3 oply)									
CO4	Determ	Laplace transform for steady state and transient analysis. mine different network functions. in the frequency domain techniques.														K3 oply)
CO5	Explain	n the free	luency d	omain te	chniques			1							K	K3 oply)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	2			3							3	3	3	3	
CO2	3	3			3							3	3	3	3	
CO3	3	2			3							3	3		3	
CO4	3	3			3							3	3	3	3	
CO5	3	2	1		3							3	3	3	3	
Average	3	2.4	1		3							3	3	3	3	

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT Electronic Devices Lab			CT COD)E:							ACULTY r. Raman I		VED:			
SESSION: 2022-23									YEAR	/ SEM: I	I / III					
Course Outcome No.							St	atement	s						Knowled K	
CO1	Unders	stand wo	rking of	basic ele	ctronics	lab equi	pment.								K (Under	
CO2	Clarify	working	g of PN j	unction	diode and	d its app	lications.								K (Apj	
CO3	Descri	be charac	cteristics	of Zene	r diode.										K (Apj	
CO4	Design	a voltag	e regula	tor using	Zener d	iode.									K (Apj	
CO5	Elabor	ate work	ing of B.	JT, FET,	MOSFE	ET and ap	oply the	concept i	in design	ing of am	plifiers.		-	-	K (Apj	
CO-PO Mapping	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO-FO Mapping CO1	3	2	1	104	3	100	10/	100	3	3	rom	3	3	3	1303	1304
C02	3	2	1		3				3	3		3	3	3		
C02	3	2	1		3				3	3		3	3	5		
CO4	3	2	2		3				3	3		3	3	3		
CO5	3	2	1		3				3	3		3	3	3		
Average	3	2	1.2		3				3	3		3	3	2.4		

					ABES I	ENGINE	ERING	COLLE	GE, GH	AZIABA	D					
			DEP	ARTME	NT OF I	ELECTE	RONICS	& COM	IMUNIC	CATION I	ENGINEE	RING				
Ref: AICTE Ex	aminatio	on Reform	ns (w.e.f.	Novemb	per, 2018	-	D-PO-P S Dr.) N.J			ore, NPTE	L, https://	www.yout	ube.com/v	vatch?v=2	28mjSlfKWi	с
NAME OF SUBJECT Digital System Design			CT CODI	E:							(S) OF F A sana Shari	CULTY I	INVOLVI	ED:		
SESSION: 2022-23										YEAR /	SEM: II /	III				
Course Outcome No.							Sta	atements	5						Knowledg K	-
C01	Design	ign and analyze combinational logic circuits.														3 oly)
CO2	Constru	uct & auc	lit modul	ar combi	national	circuits v	vith MU2	K/DEMU	X, decod	ler, encod	er.				K (App	
CO3	Create	& charac	cterize sy	nchronou	is sequen	tial logic	circuits.								K (App	
CO4	Develo	p & buil	d mini pr	oject usii	ng digital	ICs.									Ko (Crea	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	3	1	2	2							3	3	3	3	3
CO2	3	3	2	2	2	3						3	3	3	3	3
CO3	3	3	3	2	2	3						3	3	3	3	3
CO4	3	3	3	2	2	3						3	3	3	3	3
Average	3	3	2.25	2	2	3						3	3	3	3	3

			DED						,	AZIABA	D ZNGINEE	PINC				
Ref: AICTE Ex	aminatio	n Reform				C	D-PO-PS	SO MAP	PING				ıbe.com/w	atch?v=28	mjSlfKWi	с
NAME OF SUBJECT Network Analysis & Sy				2:						· /	ACULTY ar Saini, N					
SESSION: 2022-23									YEAR	/ SEM: II	/ III					
Course Outcome No.							S	tatement	ts							vledge I, KL
CO1	Unders	tand basi	ics of ele			k (Ap	(3 ply)									
CO2	Apprec	ciate elec	trical net			K	C3 ply)									
CO3	Analyz	e RLC ci	ircuits.													(4 lyze)
CO4	Determ	nine the s	tability o	f an elec	trical cire	cuit.									k (Ap	C3 ply)
CO5	Desigr	ı networl	k filters.													(3 ply)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	2	1	1	3				3	3		3	3	3		
CO2	3	2	1	1	3				3	3		3	3	3		
CO3	3	2	1	1	3				3	3		3	3			
CO4	3	2	2	1	3				3	3		3	3	3		
CO5	3	3	1	1	3				3	3		3	3	3		
Average	3	2.2	1.2	1	3				3	3		3	3	2.4		

				Α	BES EN	IGINEE	RING	COLLE	CGE, GI	HAZIAB	4D					
		J	DEPAR'	TMENT	OF EL	ECTRO	ONICS	& COM	IMUNIC	CATION	ENGINE	ERING				
Ref: AICTE Exam	ination R	eforms (v	w.e.f. No	ovember,	, 2018) 8			O MAP Rao, IIS		ore, NPTI	EL, https:	//www.yo	outube.com	n/watch?v	v=28mjSlf	KWic
NAME OF SUBJECT W Mini Project and Internshi			CODE:								F ACULT [.] g, Dr. Aja			Kapoor, N	As. Rakhi	Kumari
SESSION: 2022-23		YEAR / SEM: II / III St. 4														
Course Outcome No.		derstand the organogram of the industry and conversions the skill enhancement K2														
CO1	Underst	KL														
CO2	Write a	n effectiv	ve mini-j	project o	r interns	hip repo	ort								(.	K3 Apply)
CO3	Deliver	an effec	tive pres	entation											(,	K3 Apply)
CO4	Inculca	te non-pl	agiarism	and tear	mwork e	ethics									(,	K4 Apply)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	3		3	3	3	3		3	3	3	3	3
CO2	1	3	3	3	3			3	3	3		3	3	3	3	3
CO3	1	3	3	3	3			3	3	3		3	3	3	3	3
CO4	1	3	3	3	3			3	3	3		3	3	3	3	3
Average	1.5	3	3	3	3		3	3	3	3		3	3	3	3	3

				A	ABES E	NGINE	ERING	COLLE	GE, GH	IAZIABA	D					
			DEPAR	TMEN	T OF E	LECTR	ONICS	& COM	MUNIC	CATION	ENGINE	ERING				
Ref: AICTE Exa	mination 1	Reforms	(w.e.f. N	ovember	r, 2018))-PO-PS Dr.) N.J.	-		ore, NPTE	L, https://	/www.you	tube.com	/watch?v=	28mjSlfK	Wic
NAME OF SUBJECT WI Mathematics IV (KAS 402)		JECT CO	ODE:							E(S) OF F hish Arora		INVOL	VED:			
SESSION: 2022-23									YEAR	(/ SEM: 1	I/ IV					
Course Outcome No.							Sta	atement	S						Know	edge Level, KL
C01	Remem	member the concept of partial differential equation and to solve partial differential equations.														
CO2	Analyze	halyze the concept of partial differential equations to evaluate the problems concerned with partial differential equations.														
CO3	Underst	Analyze the concept of partial differential equations to evaluate the problems concerned with partial differential equation Understand the concept of correlation, moments, skewness and kurtosis and curve fitting.														K3 Apply)
CO4	Outline	the conc	ept of pr	obability	to evalu	iate prob	ability d	istributi	ons.						(.	K3 Apply)
CO5	Apply t	he conce	pt of hyp	othesis t	esting a	nd statist	ical qual	ity contr	ol to cre	ate contro	l charts.				(.	K3 Apply)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	3	1	2	3	3				3		3	3	3	3	2
CO2	3	3	1	2	3	3				3		3	3	3	3	2
CO3	2	3	1	3	3	3				3		3	3	3	3	2
CO4	3	3	1	3	3	3				3		3	3	3	3	2
C05	2	3	2	3	3	3				3		3	3	3	3	2
Average	2.6	3	1.2	2.6	3	3				3		3	3	3	3	2

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT W Universal Human Values (CODE:								(S) OF F hilesh Pa	ACULTY ndey	(INVOL	VED:							
SESSION: 2022-23										YEAR	/ SEM: 11	/ IV									
Course Outcome No.							St	tatemen	ts						Knowle	dge Level, KL					
CO1	need, b	basic gui	delines,	content	and pro		alue edu	ucation,				skills, un piness and			(Ui	K2 nderstand)					
CO2	Disting and Bo	-	tween th	e Self a	nd the B	ody, und	derstand	the mea	ning of I	Harmony	in the Sel	f the Co-e	existence	of Self	(Understand) K3 (Apply) K2 (Understand) K3 (Apply) PSO3 PSO4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						
CO3										nd other r ious socie		cceptable	feelings	in	(U						
CO4	Explai	n the ha	rmony ii	n nature	and exis	stence, a	nd work	out thei	r mutual	ly fulfilli	ng partici	pation in t	he nature		(U						
CO5		entiate b nment w				nical pra	ctices, a	nd start	working	out the st	rategy to	actualize a	a harmoni	ous							
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4					
C01												1				2					
CO2									1							2					
CO3									3												
CO4							3									2					
CO5						3	3	3			1	2				2					
Average						3	3	3	2		1	1.5				2					

				AI	BES EN	GINE	ERING	COLL	EGE, O	GHAZIA	BAD					
		DF	PART	MENT	OF EL	ECTR	ONICS	& CO	MMUN	ICATIC	ON ENG	INEERI	NG			
Ref: AICTE Examination	on Refor	rms (w.e	e.f. Nov	ember,	2018) 8			SO MA I.Rao, II			PTEL, ht	tps://ww	w.youtuł	be.com/w	vatch?v=2	8mjSlfKWic
NAME OF SUBJECT V Communication Engineer				DE:							(S) OF y Suri, M			OLVED:		
SESSION: 2022-23										YEAR	/ SEM: 1	II / IV				
Course Outcome No.							St	atemen	ts						Know	ledge Level, KL
CO1	Analy	ze and o	compare	e differe	ent anal	og mod	ulation	scheme	s for the	ir efficie	ncy and	bandwidt	h.		(Ur	K2 (derstand)
CO2	Diagn	ose the	behavio	or of a c	ommun	ication	(Ur	K2 (derstand)								
CO3	Invest	igate pu	ilsed m	odulatio	n syster	m and a	nalyze	their sys	stem per	rformanc	e.				(Ur	K2 (derstand)
CO4	Illustr	ate vari	ous mul	ltiplexin	ig techn	iques.									(K3 Apply)
CO5	Apply	differe	nt digita	al modu	lation s	chemes	and con	mpute tl	he bit er	ror perfo	ormance.				(Ur	K2 aderstand)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	3			2		2		3		3	3	3
CO2	3	3	3	3	3			2		2		3		3	3	3
CO3	3	3	3	3	3			2		2		3		3	3	3
CO4	3	3	3	3	3			2		2		3		3	3	3
CO5	3	3	3	3	3			2		2		3		3	3	3
Average	3	3	3	3	3			2		2		3		3	3	3

				1	ABES E	NGINE	ERING	COLL	EGE, G	HAZIAB	BAD					
			DEPAR	RTMEN	T OF E	LECTR	RONICS	& CON	MMUN	CATION	N ENGIN	EERING	(F			
Ref: AICTE Exam	ination R	eforms	(w.e.f. N	lovembe	r, 2018)	-		SO MA J.Rao, II		lore, NPT	TEL, http	s://www. <u>y</u>	youtube.co	om/watch	v=28mjS?	lfKWic
NA	ME OF	SUBJE Analog				CODE:					NA			J LTY IN Ira Bisariy	VOLVED ⁷ a	:
SESSION: 2022-23												Y	EAR / SE	M: II / IV	I	
Course Outcome No.							St	atemen	ts						Knowle	dge Level, KL
C01	Understand the characteristics of diodes and transistors.														(Ui	K2 nderstand)
CO2	Design	n and an	alyze va	rious rec	tifier an	d amplif	fier circu	iits.								K3 (Apply)
CO3	Create	sinusoi	dal and 1	non-sinu	soidal os	scillators	5.									K3 (Apply)
CO4	Descri	be the fu	unctioni	ng of Cu	rrent Mi	rror and	differer	ntial amp	olifier ciu	cuits					(Ui	K2 nderstand)
CO5	Constr	ruct LPF	, HPF, I	SPF, BS	F.											K3 (Apply)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	2					3		3	3		3	3
CO2	3	3	2	1	2					3		3	3		3	3
CO3	3	3	2	2	2					3		3	3		3	3
CO4	3	3	2	1	2					3		3	3		3	3
CO5	3	3	2	2	2					3		3	3		3	3
Average	3	3	2	1.6	2					3		3	3		3	3

				А	BES EN	IGINEI	ERING	COLLE	CGE, GI	HAZIABA	AD					
]	DEPAR	TMENT	T OF EI	LECTR	ONICS	& COM	IMUNI	CATION	ENGINE	ERING				
Ref: AICTE Exam	nination R	eforms (v	w.e.f. No	ovember	, 2018) a		-PO-PS Dr.) N.J.			ore, NPTI	EL, https:	//www.yo	outube.cor	n/watch?v	/=28mjSlf	KWic
NAME OF SUBJECT W Signal & System Lab (KE		BJECT (CODE:							E(S) OF I akhi Kum		Y INVOI	LVED:			
SESSION:2022-2023									YEAF	R / SEM:	II / IV					
Course Outcome No.							Sta	atement	s						Know	edge Level, KL
CO1																K3 Apply)
CO2																K3 Apply)
CO3	Represe	ent contir	nuous an	d discre	te systen	ns in tim	ne and fr	equency	domain	using Fo	urier serie	s and tran	sform.		(.	K3 Apply)
CO4	Diagno	se discre	te time s	ignals ir	ı z-doma	un.									(.	K3 Apply)
CO5	Study s	ampling	and reco	onstructio	on of a s	ignal.									(Un	K2 derstand)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	1										3	3	3	3	
CO2	3	2		1								3	3	3	3	
CO3	2	3	1	1	3							3	3	3	3	
CO4	2	3	1	1	3							3	3	3	3	
C05	3	2	1	2	3							3	3	3	3	
Average	2.6	2.2	1	1.25	3							3	3	3	3	

Ref: AICTE	Examin	ation Re	forms (v	w.e.f. No	ovember	, 2018) & P		SO MAPPI J.Rao, IISc H		, NPTEL,	https://ww	w.youtub	e.com/wa	atch?v=28	mjSlfKWio	2
NAME OF SUBJE Communication Eng											FACULTY /Ir. Deepak		VED:			
SESSION: 2022-23									YEAF	R / SEM:	II / IV					
Course Outcome No.							Sta	atements							Know Level	
CO1	Analy	ze and c	ompare	differen	t analog	modulation	schemes fo	r their modu	lation fa	actor and j	power.				K (Under	
CO2	Study	pulse ar	nplitude	modula	tion.										K (Under	
CO3	Charae	cterize d	ifferent	digital r	nodulati	on schemes	and can con	npute the bi	t error pe	erformanc	e.				K (Under	
CO4	Define	e and sin	nulate th	ne Phase	shift ke	ying.									K (Apj	
CO5	Desig	n a front	end BP	SK mod	ulator ar	nd demodula	ator.								K (Apj	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1	3	3				3	3		3	3	3	3	2
CO2	3	3	2	3	3				3	3		3	3	3	3	2
CO3	3	3	1	3	3				3	3		3	3	3	3	2
CO4	3	3	2	3	3				3	3		3	3	3	3	2
CO5	3	3	2	3	3				3	3		3	3	3	3	2
Average	3	3	1.6	3	3				3	3		3	3	3	3	2

				1	ABES E	NGINE	ERING	COLLE	EGE, GI	HAZIAB	AD					
			DEPAI	RTMEN	T OF E	LECTR	ONICS	& COM	IMUNI	CATION	ENGIN	EERIN	G			
Ref: AICTE Exam	ination I	Reforms	(w.e.f. N	lovembe	r, 2018))-PO-PS Dr.) N.J.			ore, NPT	EL, http	s://www	.youtube.	com/wate	ch?v=28mjSl	fKWic
NAME OF SUBJE Analog circuit Lab (ЈЕСТ С	CODE:							FACUL loo, Ms. 1			:		
SESSION:2022-23									YEAR	R / SEM:	II / IV					
Course Outcome No.						S	Stateme	nts						Knov	wledge Leve	I, KL
CO1	Unders	stand the	characte	eristics o	f transis	tors.									K2 (Understand))
CO2	Design	and ana	lyze var	ious con	figuratio	ns of am	plifier ci	ircuits.							K3 (Apply)	
CO3	Create	sinusoid	lal and n	on-sinus	oidal osc	cillators.									K3 (Apply)	
CO4	Elabor	ate the f	unctionir	ng of OP	-AMP a	nd desigi	n OP-AN	/IP based	l circuits	3.					K3 (Apply)	
CO5	Constr	uct ADC	C and DA	۸C.											K3 (Apply)	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	3	3				3	3		1	3	3	3	3
CO2	3	3	2	3	3				3	3		1	3	3	3	3
CO3	3	3	2	3	3				3	3		1	3	3	3	3
CO4	3	3	2	3	3				3	3		1	3	3	3	3
CO5	3	3	2	3	3				3	3		1	3	3	3	3
Average	3	3	2	3	3				3	3		1	3	3	3	3

			DEPAK	TMEN	I OF EI	LECTRO	UNICS	& COM	IMUNIC	CATION	ENGINE	ERING				
Ref: AICTE Exar	nination F	Reforms (w.e.f. N	ovember	, 2018) (O MAP Rao, IIS		ore, NPTE	EL, https:/	//www.yo	utube.com	n/watch?v	=28mjSlfl	KWic
NAME OF SUBJECT W Signal System Lab (KEC-4		JECT C	ODE:							E(S) OF I itu Aggarv						
SESSION: 2022-23									YEAR	R / SEM:]	II / IV					
Course Outcome No.							Sta	atement	s						Know	ledge Level, KL
CO1	Unders	tand the b	basics op	eration	of MATI	LAB.									(Ur	K2 derstand)
CO2	Analyz	e the time	e domain	and free	quency d	lomain s								(A	K4 (nalyze)	
CO3	Implem	ent the c	oncept o	f Fourie	series a	nd Four	ier trans	forms.							(K3 Apply)
CO4	Find the	e stability	of syste	em using	pole-ze	ro diagra	ams and	bode dia	ıgram.						(K3 Apply)
CO5	Design	frequenc	y respon	se of the	system.										(K3 Apply)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	3	3				3	3		3	3	3	3	2
CO2	3	3	2	3	3				3	3		3	3	3	3	2
CO3	3	3	2	3	3				3	3		3	3	3	3	2
CO4	3	3	2	3	3				3	3		3	3	3	3	2
CO5	3	3	3	3	3				3	3		3	3	3	3	2
Average	3	3	2.2	3	3				3	3		3	3	3	3	2

						ABES F	ENGINEE	RING COI	LEGE, G	HAZIABAI)					
				DEPAI	RTMEN	T OF F	ELECTRO	NICS & C	OMMUNI	CATION E	NGINEER	ING				
Ref: AICTE	Examin	ation R	eforms	(w.e.f. N	lovembe	er, 2018)		PO-PSO M r.) N.J.Rao,		lore, NPTEL	, https://wv	ww.youtu	be.com/w	vatch?v=2	28mjSlfKWi	0
NAME OF SUBJE			BJECT	CODE:						· · · · · · · · · · · · · · · · · · ·	5) OF FAC h Zadoo; M				i Garg	
SESSION: 2022-23										YEAR / S	EM: III / V	7				
Course Outcome No.								Stateme	nts						Knowledg Kl	
CO1	Explai	in comp	lete inte	ernal ana	lysis of	op-amp	741-ic								KZ (Unders	
CO2	Exami	ine and	design o	op-amp l	based ci	rcuits an	d basic cor	nponents of	fics such as	s various typ	es of filter.				Ka (App	
CO3	Imple	ment the	e concep	ot of op-	amp to o	design o	p-amp base	ed non-linea	r applicatio	ons and wave	-shaping cir	rcuits.			K: (App	
CO4	Analy	se and d	lesign b	asic digi	tal ic ci	rcuits us	ing CMOS	technology							Ka (App	oly)
CO5	Descri	ibe the f	unction	ing of a	oplicatio	on specif	ic ICs such	n as 555Tim	er, VCO IC	C 566 and PL	L.				KZ (Under	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	1	2							3	3	3	3	3
CO2	3	3	3	2	2	3						3	3	3	3	3
CO3	3	3	3	1	2							3	3	3	3	3
CO4	3	3	3	2	2							3	3	3	3	3
CO5	2	3	3		2	3						3	3	3	3	3
Average	2.8	2.8	2.8	1.5	2	3						3	3	3	3	3

Ref: AICTE Ex	aminatio	on Reform	ms (w.e.f. Noven	1ber, 201		CO-PO of. Dr.)			-	NPTEL,	https://wv	vw.youtul	be.com/w	atch?v=28	3mjSlfKW	/ic
NAME OF SUBJECT MICROPROCESSOR &				C502)							· ·		Y INVOL Tania Guj		Rajeev Pai	ndey
SESSION: 2022-23										YEAR	/ SEM: 11	I / V				
Course Outcome No.							Staten	nents								wledge el, KL
CO1	Demo	nstrate th	ne basic architect	ure of 80)85.											K2 erstand)
CO2	Illustra	Illustrate the programming model of microprocessors & write program using 8085 microprocessor.														K3 Apply)
CO3	Interpret the basics of 2026 Microprocessor and interface different external Parinheral Devices like timer. USAPT ate with														K2 lerstand)	
CO4	Compa	are Micr	oprocessors & M	icrocont	rollers, a	and com	prehend	the arch	itecture	of 8051 r	nicrocont	roller				K3 Apply)
CO5	Outlin	e the pro	ogramming mode	l of 8051	and im	plement	them to	design	projects	on real tir	ne proble	ms.				K3 Apply)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	2	3			3							3	3	3	3	
CO2	2	3	1	2	3							3	3	3	3	
CO3	2	3	1	2	3							3	3	3	3	
CO4	2	3		2	3							3	3	3	3	
CO5	2	3	2	2	3							3	3	3	3	
Average	2	3	1.33	2	3							3	3	3	3	

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

Ref: AICTE Examination Reforms (w.e.f. November, 2018) & Prof. Dr.) N.J.Rao, IISc Banglore, NPTEL, https://www.youtube.com/watch?v=28mjSlfKWic

NAME OF SUBJECT WITH SUBJECT CODE:

Digital Signal Processing (KEC-503)

NAME(S) OF FACULTY INVOLVED: Dr. Devvrat Tyagi

SESSION: 2022-23

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Design and describe different types of realizations of digital systems (IIR and FIR) and their utilities.	K3 (Apply)
CO2	Select design parameters of analog IIR digital filters (Butterworth and Chebyshev filters) and implement various methods such as impulse invariant transformation and bilinear transformation of conversion of analog to digital filters.	K3 (Apply)
CO3	Develop FIR filter using various types of window functions.	K3 (Apply)
CO4	Define the principle of discrete Fourier transform & its various properties and concept of circular and linear convolution. Also, students will be able to define and implement FFT i.e. a fast computation method of DFT.	K3 (Apply)
CO5	Identify the concept of decimation and interpolation. Also, implement it in various practical applications.	K3 (Apply)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	2	1		1									3	3		
CO2	3	1	1	1									3	3		
CO3	3	1	1	1									3			
CO4	3	1		1									3	3		
CO5	3	1	1	1									3	3		
Average	2.8	1	1	1									3	3		

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT V VLSI Technology (KEC-		UBJEC	Г CODE	•									Y INVOL Ms. Khus	A VED: Shbu Bans	al	
SESSION: 2022-23										YEAR	/ SEM: 11	I/ V				
Course Outcome No.							Stat	ements							Know	edge Level, KL
CO1	Interp	ret the ba	asics of cr	ystal grov	vth, wafe	r prepara	tion and	wafer c	leaning						(Ur	K2 derstand)
CO2	Evalua	ate the p	rocess of	Epitaxy a	nd oxidati	ion.									(K3 Apply)
CO3	Differ	entiate th	ne lithogra	aphy, etch	ing and d	lepositio	n proces	s.						(Un	K2 derstand)	
CO4	Analy	ze the pr	ocess of a	liffusion a	und ion in	nplantati	on.								(.	K3 Apply)
CO5	Expres	ss the ba	sic proces	s involve	d in meta	llization	and pac	kaging.							(Ur	K2 derstand)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	2	1	1	3		2					3	3	3	3	
CO2	2	3	1	2	1							3	3	3	3	
CO3	2	2	1	2	3							3	3	3	3	
CO4	2	3	1	1	1							3	3	3	3	
CO5	2	2	2	2	1							3	3	3	3	
Average	2	2.4	1.2	1.6	1.8		2					3	3	3	3	

Ref: AICTE Examination	n Reform	ns (w.e.f.	Novemb	per, 2018) & Prof.			PSO MA			//www.you	itube.com/	watch?v=2	28mjSlfKW	Vic		
NAME OF SUBJECT Optical Communication			T CODE	•						E(S) OF F A yanka Bha				Geetanjali	Raj		
SESSION:2022-2023		YEAR / SEM: III/V															
Course Outcome No.		Statements														edge Level, KL	
C01	Define	Define and explain the basic concepts and theory of optical communication.												(Unc	K2 lerstand)		
CO2	Descrit	Describe the signal losses with their computation and dispersion mechanism occurring inside the optical fiber cable.											K3 (Apply)				
CO3	Differe	ntiate the	e optical	sources u	sed in op	otical cor	nmunica	tion with	their con	nparative s	study.				K3 (Apply)		
CO4			nt optical systems.		ents on re	eceiver si	ide; assei	mble ther	n to solve	e real worl	d problem	s related to	optical			K3 Apply)	
CO5		1	rformanc ptical doi		ptical rec	eiver to g	get idea a	about pov	ver budge	et and ultir	nately be a	an engineer	r with adec	luate		K4 nalyze)	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1	3	2	1	2	3							3	3	3	3	2	
CO2	3	2	1	2	3							3	3	3	3	2	
CO3	3	2		1	3							3	3	3	3	2	
CO4	3	1	1	3	3							3	3	3	3	2	
CO5	3	1	2	2	3	3	3					3	3	3	3	2	
Average	3	1.6	1.25	2	3	3	3					3	3	3	3	2	

			DEPARTM	IENT O	F ELEC	TRON	ICS & C	COMMU	INICAT	ION ENG	GINEERI	NG					
Ref: AICTE I	Examinat	ion Refo	orms (w.e.f. Nove	mber, 20	18) & Pi)-PSO N N.J.Rao			NPTEL, 1	nttps://ww	w.youtub	e.com/wa	tch?v=28r	njSlfKWi	с	
NAME OF SUBJEC Integrated Circuit Lab			ECT CODE:								G ACULT g, Dr. Ma						
SESSION: 2022-23		YEAR / SEM: III / V															
Course Outcome No.		Statements														Knowledge Level, KL	
CO1		Design different non-linear applications of operational amplifiers such as log, antilog amplifiers and voltage comparators.													K3 oply)		
CO2	Explai	Explain and design different linear applications of operational amplifiers such as filters.												K3 (Apply)			
CO3	Demor	Demonstrate the function of waveforms generator using op-Amp.												K3 (Apply)			
CO4	Constr	uct mult	ivibrator and osci	llator cir	cuits usi	ng IC55	5 and IC	566 and	perform	measuren	nents of fr	equency a	and time.		K3 (Apply)		
CO5	Develo	op and p	actically demons	trate the	applicati	ions base	ed on IC:	555 and	IC566.						K3 (Apply)		
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1	3	3	2	3	3				3	3			3	3			
CO2	3	3	2	3	3				3	3			3	3			
CO3	3	3	2	3	3				3	3			3				
CO4	3	3	2	3	3				3	3			3	3			
CO5	3	3	2	3	3				3	3			3	3			
Average	2.5 2.5 1.67 2.5 2.5 2.5 2.5 3											3					

			DEPARTM	IENT O	F ELEC	TRON	ICS & C	COMMU	INICAT	ION ENG	GINEERI	NG					
Ref: AICTE I	Examinat	tion Refo	orms (w.e.f. Nove	mber, 20)18) & P)-PSO M N.J.Rao			NPTEL,	https://ww	w.youtub	e.com/wa	tch?v=28n	njSlfKWi	2	
NAME OF SUBJEC Microprocessor & Mi										E(S) OF I anjeeta Ya				Rajeev Par	ıdey		
SESSION: 2022-23	23 YEAR / SEM: III / V																
Course Outcome No.	ome Statements														Knowledge Level, KL		
CO1	Use techniques, skills, modern engineering tools, instrumentation and software/hardware appropriately to list and demonstrate arithmetic and logical operations on 8 bit data using microprocessor 8085.												trate		K3 oply)		
CO2	Examine 8085 & 8086 microprocessor and its interfacing with peripheral devices.											K3 (Apply)					
CO3	State various conversion techniques using 8085 & 8086 and generate waveforms using 8085											K3 (Apply)					
CO4	Impler	nent pro	gramming concep	ot of 805	1 Microc	controlle	r.								K3 (Apply)		
CO5	Desigr	n concept	ts to Interface per	ipheral d	levices w	vith Mici	rocontrol	ler so as	to desig	n Microco	ontroller b	ased proje	ects.			C3 oply)	
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CO1	3	3	2	3	2	3		3	3	3		3	3	3	3	3	
CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
CO3	2	3	1	3	3	3		3	3	3		3	3	3	3	3	
CO4	2	2	2	2	1	3		3	3	3		3	3	3	3	3	
CO5	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Average	2.6	2.8	2.2	2.8	2.4	3	3	3	3	3	3	3	3	3	3	3	

				Α	BES EN	IGINEE	ERING	COLLE	CGE, GI	IAZIABA	AD					
		I	DEPAR	FMEN 1	OF EL	LECTRO	ONICS	& COM	IMUNIC	CATION	ENGINE	ERING				
Ref: AICTE Exam	nination R	eforms (v	w.e.f. No	ovember.	, 2018) &		-PO-PS Dr.) N.J.			ore, NPTI	EL, https:	//www.yo	outube.cor	n/watch?v	v=28mjSlf	KWic
	C OF SUBJECT WITH SUBJECT CODE: NAME(S) OF FACULTY INVOLVED: Signal Processing Lab (KEC-553) Dr. Devvrat Tyagi, Ms. Shobha Sharma ON: 2022 22 VEAD (SEM: 111 (V)															
SESSION: 2022-23	SION: 2022-23 YEAR / SEM: III / V															
Course Outcome No.	ourse Outcome No. Statements														Knowl	edge Level, KL
CO1	Create and visualize various discrete/digital signals using MATLAB/Scilab													(4	K3 Apply)	
CO2	Implem	Implement and test the basic operations of Signal Processing											(4	K3 Apply)		
CO3	Examir	e and an	alyze the	spectra	l parame	eters of v	window	function	S						(4	K3 Apply)
CO4	Design	IIR and I	FIR filte	rs for ba	nd pass,	band sto	op, low j	pass and	high pa	ss filters.					(4	K3 Apply)
CO5	Develo	p the sigr	nal proce	essing alg	gorithms	s using N	MATLA	B/Scilab							(4	K3 Apply)
CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	3	2	2	3				3	2		3	3	3	3	2
CO2	3	3	2	2	3				3	2		3	3	3	3	2
CO3	3	3	2	2	3				3	2		3	3		3	2
CO4	3	3	2	2	3				3	2		3	3	3	3	2
CO5	3	3	2	2	3				3	2		3	3	3	3	2
Average	3	3	2	2	3				3	2		3	3	3	3	2

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

M_{1111} Project and internenin Lan Assessment (K Hi $-22/1$)	NAME(S) OF FACULTY INVOLVED: Dr. Himani Garg, Mr. Sanjeev Saini, Ms. Ranjeeta Yadav, Mr. Shailendra Bisariya, Mr. Navneet Sharma, Mr. Rajeev Pandey
SESSION:2022-23	YEAR / SEM: III / V

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Understand the organ gram of the industry and appreciate the skill enhancement	K5 (Understand)
CO2	Write an effective mini-project or internship report	K3 (Apply)
CO3	Deliver an effective presentation	K3 (Apply)
CO4	Inculcate non-plagiarism and team work ethics	K3 (Apply)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	3		3	3	3	3		3	3	3	3	3
CO2	1	3	3	3	3			3	3	3		3	3	3	3	3
CO3	1	3	3	3	3			3	3	3		3	3	3	3	3
CO4	1	3	3	3	3			3	3	3		3	3	3	3	3
Average	1.5	3	3	3	3		3	3	3	3		3	3	3	3	3

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

Digital communication (KEC-601)	NAME(S) OF FACULTY INVOLVED: Dr. Priyanka Bharadwaj Ms. Upasana Sharma
SESSION:2022-23	YEAR / SEM: III / VI

Course Outcome No.	Statements	Knowledge Level, KL
CO1	To formulate basic statistics involved in communication theory.	K3 (Apply)
CO2	To demonstrate the concepts involved in digital communication.	K3 (Apply)
CO3	To explain the concepts of digital modulation schemes.	K2 (Understand)
CO4	To analyze the performance of digital communication systems.	K4 (Analyze)
CO5	To apply the concept of information theory in digital systems.	K3 (Apply)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	3	3	3	3	3	2			3	1	3	3	3	3	3
CO2	3	3	2	3	3	3	2			3		3	3	3	3	3
CO3	2	3	3	3	3	3	3			3	1	3	3	3	3	3
CO4	3	3	3	3	3	3	3			3	1	3	3	3	3	3
CO5	3	3	3	3	3	3	2			3	2	3	3	3	3	3
Average	2.8	3	2.8	3	3	3	2.4			3	1.25	3	3	3	3	3

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

Ref: AICTE Examination Reforms (w.e.f. November, 2018) & Prof. Dr.) N.J.Rao, IISc Banglore, NPTEL, https://www.youtube.com/watch?v=28mjSlfKWic

NAME OF SUBJECT WITH SUBJECT CODE:	NAME(S) OF FACULTY INVOLVED:
Control System [KEC-602]	Dr. Raman Kapoor, Ms. Ritu Aggarwal
SESSION:2022-23	YEAR / SEM: III / VI

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Describe the basics of control systems along with different types of feedback and its effect. Additionally they will also be able to explain the techniques such as block diagrams reduction, signal flow graph and modelling of various physical systems along with modelling of DC servomotor.	K3 (Apply)
CO2	Explain the concept of state variables for the representation of LTI system.	K3 (Apply)
CO3	Interpret the time domain response analysis for various types of inputs along with the time domain specifications.	K3 (Apply)
CO4	Distinguish the concepts of absolute and relative stability for continuous data systems along with different methods.	K3 (Apply)
CO5	Interpret the concept of frequency domain response analysis and their specifications.	K3 (Apply)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	3	2	2	3					2		3	3	3	3	2
CO2	3	3	3	2	3					2		3	3	3	3	2
CO3	3	3	2	3	3					2		3	3	3	3	2
CO4	2	3	1	3	3					2		3	3	3	3	2
CO5	3	3	2	3	3					2		3	3	3	3	2
Average	2.8	3	2	2.6	3					2		3	3	3	3	2

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

Ref: AICTE Examination Reforms (w.e.f. November, 2018) & Prof. Dr.) N.J.Rao, IISc Banglore, NPTEL, https://www.youtube.com/watch?v=28mjSlfKWic

NAME OF SUBJECT WITH SUBJECT CODE:

Antenna and Wave Propagation [KEC 603]

NAME(S) OF FACULTY INVOLVED:

Dr.Manish Zadoo, Dr. Manidipa Roy, Dr. Jugul Kishor

SESSION:2022-23

YEAR / SEM: III / VI

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Identify different coordinate systems and their applications in electromagnetic field theory to establish a relation between any two systems using the vector calculus.	K3 (Apply)
CO2	Explain the concept of static electric field, current and properties of conductors.	K2 (Understand)
CO3	Express the basic concepts of ground, space, sky wave propagation mechanism.	K2 (Understand)
CO4	Demonstrate the knowledge of antenna fundamentals and radiation mechanism of the antenna.	K3 (Apply)
CO5	Analyze and design different types of basic antennas.	K4 (Analyze)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2			3	2					3	3			3
CO2	3	3	2			3	2					3	3		3	3
CO3	3	3	2			3	2					3	3		3	3
CO4	3	3	2			3	2					3	3		3	3
CO5	3	3	3			3	3					3	3		3	3
Average	3	3	2.2			3	2.2					3	3		3	3

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

Ref: AICTE Examination Reforms (w.e.f. November, 2018) & Prof. Dr.) N.J.Rao, IISc Banglore, NPTEL, https://www.youtube.com/watch?v=28mjSlfKWic

NAME OF SUBJECT WITH SUBJECT CODE: NAME(S) OF FACULTY INVOLVED: Data Communication Networks [KEC-063] Ms. Khusbhu Bansal, Ms. Pallavie Tyagi SESSION:2022-23 YEAR / SEM: III / VI

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Identify the issues and challenges in the architecture of a network.	K2 (Understand)
CO2	Analyze the services and features of various protocol layers in data layer.	K3 (Apply)
CO3	Demonstrate the knowledge of multiple access to design a access technique for a particular application.	K3 (Apply)
CO4	Realize protocols at different layers of a network hierarchy.	K3 (Apply)
CO5	Recognize security issues in a network and various application of application layer.	K2 (Understand)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	2	2	1	1		3	3	3		3	2	3	3		3	2
CO2	2	2	1	1		3	3	3		3	2	3	3		3	2
CO3	2	2	1	1		3	3	3		3	2	3	3		3	2
CO4	2	2	1	1		3	3	3		3	2	3	3		3	2
C05	2	2	1	1		3	3	3		3	2	3	3		3	2
Average	2	2	1	1		3	3	3		3	2	3	3		3	2

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

	NAME(S) OF FACULTY INVOLVED: Dr. Puneet Garg, Dr. Meeta Chaudhary
SESSION:2022-23	YEAR / SEM: III / VI

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Describe the features of a database system and its application and compare various types of data models.	K2 (Understand)
CO2	Construct an ER Model for a given problem and transform it into a relation database schema.	K3 (Apply)
CO3	Formulate solution to a query problem using SQL Commands, relational algebra, tuple calculus and domain calculus.	K3 (Apply)
CO4	Explain the need of normalization and normalize a given relation to the desired normal form.	K3 (Apply)
CO5	Compare different approaches to transaction processing and concurrency control.	K2 (Understand)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	1			1												
CO2	1	2	3	3	3		3		3	3	1	3		3		
CO3	2	3	2	3	3	3	2		2		1	3	2			
CO4	1	1	1	1					1			3	3			
CO5	1	1										3				
Average	1.2	1.75	2	2	3	3	2.5		2	3	1	3	2.5	3		

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

Ref: AICTE Examination Reforms (w.e.f. November, 2018) & Prof. Dr.) N.J.Rao, IISc Banglore, NPTEL, https://www.youtube.com/watch?v=28mjSlfKWic

NAME OF SUBJECT WITH SUBJECT CODE:

DIGITAL COMMUNICATION LAB (KEC651)

NAME(S) OF FACULTY INVOLVED: Dr. Ajay Suri, Dr. Manidipa Roy, Ms. Geetanjali Raj

SESSION:2022-23

YEAR / SEM: III / VI

Course Outcome No.	Statements	Knowledge Level, KL
CO1	To formulate basic concepts of pulse shaping in digital communication	K3 (Apply)
CO2	To identify different line coding techniques and demonstrate the concepts.	K3 (Apply)
CO3	To design equipments related to digital modulation and demodulation schemes.	K2 (Understand)
CO4	To analyze the performance of digital communication systems.	K4 (Analyze)
CO5	To conceptualize error detection & correction using different coding schemes in digital communication.	K3 (Apply)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	1	3								3	3	3	3	3
CO2	3	3		3								3	3	3	3	3
CO3	3	3	2	3		3						3	3	3	3	3
CO4	3	3	2	3								3	3	3	3	3
CO5	3	3	2	3								3	3	3	3	3
Average	3	3	1.75	3		3						3	3	3	3	3

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

Ref: AICTE Examination Reforms (w.e.f. November, 2018) & Prof. Dr.) N.J.Rao, IISc Banglore, NPTEL, https://www.youtube.com/watch?v=28mjSlfKWic

NAME OF SUBJECT WITH SUBJECT CODE: NAME(S) OF FACULTY INVOLVED: CONTROL SYSTEM LAB (KEC-652) Dr. Jugul Kishore Gupta, Dr. Raman Kapoor, Ms. Ritu Aggarwal, Mr. Hitesh Tomar, SESSION:2022-23 YEAR / SEM: III / VI

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Classify different tools in MATLAB along with the basic matrix operations used in MATLAB.	K3 (Apply)
CO2	Evaluate the poles and zeros on s-plane along with transfer function of a given system.	K3 (Apply)
CO3	Construct state space model of a linear continuous system.	K3 (Apply)
CO4	Interpret the various specifications of time domain response of a given system.	K3 (Apply)
CO5	Appraise the steady state error of a given transfer function.	K3 (Apply)
CO6	Examine the relative stability of a given transfer function using various methods such as root locus, Bode plot and Nyquist plot.	K3 (Apply)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	3				3	2		3	3	3	3	2
CO2	3	3	2	2	3				3	2		3	3	3	3	2
CO3	3	3	2	2	3				3	2		3	3		3	2
CO4	3	3	2	2	3				3	2		3	3	3	3	2
CO5	3	3	2	2	3				3	2		3	3	3	3	2
CO6	3	3	2	2	3				3	2		3	3	3	3	2
Average	3	3	2	2	3				3	2		3	3	3	3	2

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

Ref: AICTE Examination Reforms (w.e.f. November, 2018) & Prof. Dr.) N.J.Rao, IISc Banglore, NPTEL, https://www.youtube.com/watch?v=28mjSlfKWic

NAME OF SUBJECT WITH SUBJECT CODE: NAME(S) OF FACULTY INVOLVED: CAD of Electronics Lab (KEC-653) Mr. Shailendra Bisariya, Ms. Upasana Sharma, Ms. Pallavie Tyagi, Mr. Rajeev SESSION:2022-23 YEAR / SEM: III / VI

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Design and analyze the performance of different type of inverters.	K4 (Analyze)
CO2	Create and explain the performance of the basic logic gates using CMOS inverter circuit.	K3 (Apply)
CO3	Construct and survey the performance of the memory based digital circuits using CMOS inverter circuit.	K3 (Apply)
CO4	Appraise the performance of the different configuration of MOS amplifier circuits.	K4 (Analyze)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	3				3	3		3	3	3	3	2
CO2	3	3	3	3	3				3	3		3	3	3	3	2
CO3	3	3	3	3	3				3	3		3	3	3	3	2
CO4	3	3	3	3	3				3	3		3	3	3	3	2
Average	3	3	3	3	3				3	3		3	3	3	3	2

	ABES ENGINEERING COLI	LEGE, GHAZIABAD									
	DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING										
Ref: AICTE Ex	CO-PO-PSO MAPPING Ref: AICTE Examination Reforms (w.e.f. November, 2018) & Prof. Dr.) N.J.Rao, IISc Banglore, NPTEL, https://www.youtube.com/watch?v=28mjSlfKWic										
	WITH SUBJECT CODE: NAGEMENT & ENTREPRENEURSHIP	NAME(S) OF FACULTY INVOLVED: Dr. Rahul Verma									
SESSION:2022-23		YEAR / SEM: IV / VII									
Course Outcome No.	Statement	S S	Knowledge Level, KL								
CO1 Understand need, scope and definition of entrepreneurship.											
CO2	CO2 Explain innovation and create sustaining enterprising model.										

(Understand) K2

(Understand) K3

(Apply) K4

(Analyze)

CO3

CO4

CO5

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1		1	1	1	2	3	3	3	3	1	3	2				3
CO2	1	3	3	3	3	3	3	3	3	2	3	3		2	2	3
CO3	1	1	1	1	1	2	2	3	3	3	3	2				2
CO4						3	3	3			3	2				3
CO5	1	2	2	1	1	3	3	3	2	1		1				3
Average	1	1	1.75	1.5	1.75	2.8	2.8	3	2.75	1.75	3	2		2	2	2.8

Discuss project management: meaning, scope & importance, role of project manager.

Estimate project cost & working capital requirements.

Analyze social sector perspectives and social entrepreneurship.

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT WITH SUBJECT CODE:	NAME(S) OF FACULTY INVOLVED:
VLSI Design [KEC-072]	Ms. Pallavie Tyagi
SESSION:2022-23	YEAR / SEM: IV / VII

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Express the concept of VLSI design and CMOS circuits and delay study.	K2 (Understand)
CO2	Analyze mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits.	K4 (Analyze)
CO3	Design and analyze various combinational & sequential circuits based on CMOS technology.	K4 (Analyze)
CO4	Examine power logic circuits and different semiconductor memories used in present day technology.	K3 (Apply)
CO5	Interpret faults in digital circuits, Fault Models and various Testing Methodologies	K3 (Apply)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	2	3	3	2			2		3	3	3	3	2
CO2	3	3	3	3	2	3				2		3	3	3	3	2
CO3	3	3	3	3	3	3				2		3	3	3	3	2
CO4	3	3	3	2	2	3				2		3	3	3	3	2
CO5	3	2	3	3	2	3				2		3	3	3	3	2
Average	3	2.8	3	2.6	2.4	3	2			2		3	3	3	3	2

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT WITH SUBJECT CODE:	NAME(S) OF FACULTY INVOLVED:
Information Theory and Coding (KEC 075)	Shilpa Srivastava
SESSION:2022-23	YEAR / SEM: IV / VII

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Explain each block involved in digital communication thoroughly with applications.	K2 (Understand)
CO2	Apply the knowledge of basic concepts of probability and entropies to analyze the behavior of a communication system.	K3 (Apply)
CO3	Analyze the use of source coding and evaluating all the techniques of source coding.	K4 (Analyze)
CO4	Examine the significance of channel coding and evaluating all available techniques of channel coding and decoding with challenges.	K3 (Apply)c
CO5	Examine various error control coding techniques.	K3 (Apply)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	3		3					3	3	3	3	3
CO2	3	3	3	3	3							3	3	3	3	3
CO3	3	3	3	3	3							3	3	3	3	3
CO4	3	3	3	3	3							3	3	3	3	3
CO5	3	3	3	3	3							3	3	3	3	3
Average	3	3	3	3	3		3					3	3	3	3	3

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT WITH SUBJECT CODE:	NAME(S) OF FACULTY INVOLVED:
Wireless and Mobile Communication (KEC 076)	Dr. Jugal Kishore
SESSION:2022-23	YEAR / SEM: IV / VII

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Express the basic knowledge of mobile radio & cellular communication fundamentals and their application to propagation mechanisms, path loss models and multi-path phenomenon.	K3 (Apply)
CO2	Analyze the performance of various voice coding and diversity techniques.	K3 (Apply)
CO3	Apply the knowledge of wireless transmission basics to understand the concepts of equalization and multiple access techniques.	K3 (Apply)
CO4	Examine the performance of cellular systems being employed such as GSM, CDMA and LTE using various theoretical and mathematical aspects.	K2 (Understand)
CO5	Describe basic knowledge of mobile adhoc networks and the existing & upcoming data communication networks in wireless and mobile communication domain.	K3 (Apply)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	3	2	1		3	2			3	1	3	3			3
CO2	3	3	3	1		3	2			3	1	3	3		3	3
CO3	3	3	3	1		3	2			3	3	3	3		3	3
CO4	3	3	2	1		3	2	2		3	3	3	3		3	3
CO5	3	3	3	3	3	3	3	2		3	2	3	3	3	3	3
Average	3	3	2.6	1.4	3	3	2.2	2		3	2	3	3	3	3	3

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT WITH SUBJECT CODE:	NAME(S) OF FACULTY INVOLVED:
Renewable Energy Resources [KOE-074]	Ms. Geetanjali Raj
SESSION:2022-23	YEAR / SEM: IV / VII

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Distinguish about different types of renewable and nonrenewable energy resources and review their advantages and disadvantages. Also demonstrate the working and limitations of various solar cells, solar arrays and solar cell power plants	K3 (Apply)
CO2	Analyze solar radiation and flat plate collector, solar thermal power plant and thermal energy storage for heating and cooling.	K2 (Understand)
CO3	Differentiate between different types of geothermal resources, analysis of geothermal resources and geothermal energy conversion. Also to understand mhd and their performance and understand different types of fuel cells.	K2 (Understand)
CO4	Understand thermo-electrical power conversion and thermionic power conversion and also wind energy, energy estimation of wind, types of rotors and conversion systems.	K3 (Apply)
CO5	Compare between different forms of biomass and their fuel properties. also ocean thermal energy and their conversion technology, wave energy technology and tidal energy technology.	K2 (Understand)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	3	2			3	2					3	3		3	3
CO2	3	3	1			3	2					3	3		3	3
CO3	3	3	1			3	2					3	3		3	3
CO4	3	3	1			3	2					3	3		3	3
CO5	3	3	1			3	2					3	3		3	3
Average	3	3	1.2			3	2					3	3		3	3

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT WITH SUBJECT CODE:	NAME(S) OF FACULTY INVOLVED:
VLSI Design Lab [KEC-751B]	Dr. Raman Kapoor & Ms. Pallavie Tyagi
SESSION:2021-22	YEAR / SEM: IV / VII

Course Outcome No	. Statements	Knowledge Level, KL
CO1	Designing of Logic Gates.	K3 (Apply)
CO2	Implementation of combinational and sequential circuits using CMOS logic.	K3 (Apply)
CO3	Analyze amplifier circuits.	K4 (Analyze)
CO4	Design sequential circuits such as flip flop.	K3 (Apply)
CO5	Do the layout designing for physical analysis of the MOS transistor and MOS based circuits.	K4 (Analyze)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	2	1	1	3		2					3	3	3	3	
CO2	2	3	1	2	1							3	3	3	3	
CO3	2	2	1	2	3							3	3	3	3	
CO4	2	3	1	1	1							3	3	3	3	
CO5	2	2	2	2	1							3	3	3	3	
Average	2	2.4	1.2	1.6	1.8		2					3	3	3	3	

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT WITH SUBJECT CODE:	NAME(S) OF FACULTY INVOLVED:
Mini Project and Internship (KEC-752)	Ms. Khusbhu Bansal, Ms. Tania Gupta,
SESSION:2022-23	YEAR / SEM: IV / VII

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Understand the organogram of the industry and appreciate the skill enhancement	K2 (Understand)
CO2	Write effective training report	K3 (Apply)
CO3	Deliver an effective presentation	K3 (Apply)
CO4	Prepare well organized training diary	K3 (Apply)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	3	3	3	3	3		3	3	3	3		3	3	3	3	3
CO2	1	3	3	3	3			3	3	3		3	3	3	3	3
CO3	1	3	3	3	3			3	3	3		3	3	3	3	3
CO4	1	3	3	3	3			3	3	3		3	3	3	3	3
Average	1.5	3	3	3	3		3	3	3	3		3	3	3	3	3

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT WITH SUBJECT CODE: Project I (KEC753)	NAME(S) OF FACULTY INVOLVED: [Prof. (Dr.)Sanjay Kr. Singh, Prof. (Dr.) Priyanka Bharadwaj, Mr. Manish, Dr. Jugul Kishore, Dr. Manidipa Roy, Mr. Mudit Saxena, Ms. Khushbu Bansal, Ms. Pallavie Tyagi, Ms. Geetanjali Raj]
SESSION:2022-23	YEAR / SEM: IV / VII

Course Outcome No.	Statements	Knowledge Level, KL
CO1	An ability to prepare proposal which is relevant to subject of engineering.	K4 (Analyze)
CO2	An ability to design the system components and process and identify the engineering tools.	K5 (Evaluate)
CO3	An ability to use management skills and implement the task, manages problems encountered, work as a team and present the work progress	K6 (Create)
CO4	An ability to incorporate the suggestions made and manages resources and work as team.	K6 (Create)
CO5	An ability to write a document with standard technical report writing procedures.	K4 (Analysis)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	1		3	3	2			1	3	3		3	3
CO2	3	3	3	1		3			3		1	3	3		3	3
CO3	3	3	2	1	1	3			3		1	3	3		3	3
CO4	3	3	2	1	1	3					1	3	3	3	3	3
CO5										2						3
Average	3	3	2.25	1	1	3	3	2	3	2	1	3	3	3	3	3

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT WITH SUBJECT CODE: Rural Development: Administration and Planning (KHU-801)	NAME(S) OF FACULTY INVOLVED:
SESSION:2022-23	YEAR / SEM: IV / VIII

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Understand need, scope and definition of entrepreneurship.	K2 (Understand)
CO2	Explain innovation and create sustaining enterprising model.	K2 (Understand)
CO3	Discuss project management: meaning, scope & importance, role of project manager.	K2 (Understand)
CO4	Estimate project cost & working capital requirements.	K3 (Apply)
CO5	Analyze social sector perspectives and social entrepreneurship.	K4 (Analyze)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1						2	3		1			3				3
CO2						3	2				3	3				3
CO3						3	3	2	1	1	2	3				3
CO4						3					3	3				3
CO5						3	1	1	3	1		3				3
Average						2.8	2.25	1.5	1.67	1	2.67	3				3

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT WITH SUBJECT CODE: Cloud Computing (KOE-081)	NAME(S) OF FACULTY INVOLVED:
SESSION:2022-23	YEAR / SEM: IV / VIII

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Detect the trade-offs between deploying applications in the cloud and over the local infrastructure.	K2 (Understand)
CO2	Compare the advantages and disadvantages of various cloud computing platforms.	K2 (Understand)
CO3	Analyze the performance, scalability, and availability of the underlying cloud technologies and software.	K2 (Understand)
CO4	Identify security and privacy issues in cloud computing.	K3 (Apply)
CO5	Explain recent technologies and advancements in cloud computing and identify their application area.	K4 (Analyze)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	3											2			2
CO2	1	2														
CO3		3	1	1												
CO4	1	1	2			1	2	2								
CO5			2			2	1					2				
Average	1.33	2.25	1.66	1		1.5	1.5	2				2	2			2

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

NAME OF SUBJECT WITH SUBJECT CODE: DIGITAL AND SOCIAL MEDIA MARKETING [KOE-094]	NAME(S) OF FACULTY INVOLVED: Mr. RAJEEV KUMAR PANDEY
SESSION:2022-23	YEAR / SEM: IV / VIII

Course Outcome No.	Statements	Knowledge Level, KL
CO1	Explain trends that are driving shifts from traditional marketing practices to digital marketing practices.	K2 (Understand)
CO2	Describe different strategies used in Social Media Marketing.	K2 (Understand)
CO3	Generalize steps used to Acquire & Engage Users through Digital Channels.	K2 (Understand)
CO4	Design Organization for Digital Success.	K4 (Analyze)
CO5	Compare different Digital Innovation and Trends.	K4 (Analyze)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01			1	1	2	3	2	3		2		3				
CO2			1	3	2	3	3	3		3	2	3				2
CO3		2	1	3	2	3	3	3		3	3	3				2
CO4		2	1	3	2	3	3	3	3	2	3	1				2
CO5		1	1	1	2	3	2	3		2	1	3				
Average		1.67	1	2.2	2	3	2.6	3	3	2.4	2.25	2.6				2

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

CO-PO-PSO MAPPING

Ref: AICTE Examination Reforms (w.e.f. November, 2018) & Prof. Dr.) N.J.Rao, IISc Banglore, NPTEL, https://www.youtube.com/watch?v=28mjSlfKWic

NAME OF SUBJECT WITH SUBJECT CODE:

Project II (KEC851)

NAME(S) OF FACULTY INVOLVED: Prof.(Dr.) Priyanka Bhardwaj, Mr. Manish, Dr. Jugul Kishore Gupta, Dr. Manidipa Roy, Ms. Shilpa Srivastava, Ms. Geetanjali Raj

SESSION:2022-23

YEAR / SEM: IV / VIII

Course Outcome No.	Statements	Knowledge Level, KL
CO1	An ability to prepare proposal which is relevant to subject of engineering.	K4 (Analyze)
CO2	An ability to design the system components and process and identify the engineering tools.	K5 (Evaluate)
CO3	An ability to use management skills and implement the task, manages problems encountered, work as a team and present the work progress	K6 (Create)
CO4	An ability to incorporate the suggestions made and manages resources and work as team.	K6 (Create)
CO5	An ability to write a document with standard technical report writing procedures.	K4 (Analysis)

CO-PO Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
C01	1	3	3		3		3	2			1	3	3		3	3
CO2	3	3	3		2				3		1	3	3		3	3
CO3	2	1	1	3	1	2			3		1	3	3		3	3
CO4	3			3	2	3					1	3	3	3	3	3
C05			1		1					2						3
Average	2.25	2.33	2	3	1.8	2.5	3	2	3	2	1	3	3	3	3	3